Theoretical design of new ligands to boost reaction rate and selectivity in palladium-catalyzed aromatic fluorination
Corresponding Author
Josefredo R. Pliego Jr
Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
Correspondence
Josefredo R. Pliego Jr, Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160 São João del-Rei, MG, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Josefredo R. Pliego Jr
Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
Correspondence
Josefredo R. Pliego Jr, Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160 São João del-Rei, MG, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
The development of palladium-catalyzed fluorination with biaryl monophosphine ligands has faced two important problems that limit its application for bromoarenes: the formation of regioisomers and insufficient catalysis for heteroaryl substrates as bromothiophene derivatives. Overcoming these problems requires more ligand design. In this work, reliable theoretical calculations were used to elucidate important ligand features necessary for achieving more rate acceleration and selectivity. These features include increasing the ligand-substrate repulsion and creating a negative charge in the space around the fluoride ion bonded to the palladium. The investigated L5 ligand presents these features, and the calculations predict that this ligand completely suppresses the regioisomer formation in the difficult case of 4-bromoanisole. In addition, the free energy barriers are decreased by 2–3 kcal mol−1 in comparison with the catalysis involving the AlPhos ligand. Thus, the present study points out a direction for new developments in palladium-catalyzed fluorination.
CONFLICT OF INTEREST STATEMENT
There are no conflicts to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jcc27513-sup-0001-Supinfo1.zipZip archive, 63.2 KB | Data S1 Supporting Information. |
jcc27513-sup-0002-Supinfo2.zipZip archive, 609.7 KB | Data S2 Supporting Information. |
jcc27513-sup-0003-Supinfo3.zipZip archive, 47.1 KB | Data S3 Supporting Information. |
jcc27513-sup-0004-Supinfo4.docxWord 2007 document , 30.3 KB | Data S4 The coordinates of the optimized structures and the Tables with the calculations are available. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1D. E. Yerien, S. Bonesi, A. Postigo, Org. Biomol. Chem. 2016, 14, 8398.
- 2E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315.
- 3S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320.
- 4Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience 2020, 23, 101467.
- 5D. van der Born, A. Pees, A. J. Poot, R. V. A. Orru, A. D. Windhorst, D. J. Vugts, Chem. Soc. Rev. 2017, 46, 4709.
- 6C. Zhang, H. Wu, S. Feng, J. Meng, J. Membr. Sci. 2023, 687, 122030.
- 7B. Milián-Medina, J. Gierschner, J. Phys. Chem. Lett. 2017, 8, 91.
- 8N. Kolobov, L. Garzon-Tovar, T. Shoinkhorova, G. Shterk, S.-H. Chung, A. Rendón-Patiño, A. Alfaraidi, J. Ruiz-Martínez, C. H. Hendon, J. Gascon, J. Catal. 2024, 431, 115370.
- 9P. T. Lowe, D. O'Hagan, J. Fluorine Chem. 2020, 230, 109420.
- 10P. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev. 2015, 115, 9073.
- 11J.-W. Lee, M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim, C. E. Song, Chem. Soc. Rev. 2016, 45, 4638.
- 12A. C. Sather, S. L. Buchwald, Acc. Chem. Res. 2016, 49, 2146.
- 13J. R. Pliego, Org. Biomol. Chem. 2021, 19, 1900.
- 14S. M. Kang, C. H. Kim, K. C. Lee, D. W. Kim, Org. Lett. 2019, 21, 3062.
- 15A. S. Melo, M. S. Valle, J. R. Pliego, J. Fluorine Chem. 2023, 269, 110146.
- 16S. L. Silva, M. S. Valle, J. R. Pliego, J. Org. Chem. 2020, 85, 15457.
- 17G. Pupo, V. Gouverneur, J. Am. Chem. Soc. 2022, 144, 5200.
- 18G. Roagna, D. M. H. Ascough, F. Ibba, A. C. Vicini, A. Fontana, K. E. Christensen, A. Peschiulli, D. Oehlrich, A. Misale, A. A. Trabanco, R. S. Paton, G. Pupo, V. Gouverneur, J. Am. Chem. Soc. 2020, 142, 14045.
- 19F. Ibba, G. Pupo, A. L. Thompson, J. M. Brown, T. D. W. Claridge, V. Gouverneur, J. Am. Chem. Soc. 2020, 142, 19731.
- 20G. Pupo, A. C. Vicini, D. M. H. Ascough, F. Ibba, K. E. Christensen, A. L. Thompson, J. M. Brown, R. S. Paton, V. Gouverneur, J. Am. Chem. Soc. 2019, 141, 2878.
- 21K. M. Engle, L. Pfeifer, G. W. Pidgeon, G. T. Giuffredi, A. L. Thompson, R. S. Paton, J. M. Brown, V. Gouverneur, Chem. Sci. 2015, 6, 5293.
- 22F. M. Lisboa, J. R. Pliego, J. Mol. Model. 2022, 28, 159.
- 23V. H. Jadhav, H. J. Jeong, W. Choi, D. W. Kim, Chem. Eng. J. 2015, 270, 36.
- 24A. J. Cresswell, S. G. Davies, P. M. Roberts, J. E. Thomson, Chem. Rev. 2015, 115, 566.
- 25S. Caron, Org. Process Res. Dev. 2020, 24, 470.
- 26V. V. Grushin, Acc. Chem. Res. 2010, 43, 160.
- 27H. Sun, S. G. DiMagno, Angew. Chem., Int. Ed. 2006, 45, 2720.
- 28Y. Y. See, M. T. Morales-Colón, D. C. Bland, M. S. Sanford, Acc. Chem. Res. 2020, 53, 2372.
- 29J. R. Pliego Jr., D. Pilo-Veloso, Phys. Chem. Chem. Phys. 2008, 10, 1118.
- 30T. Dong, G. C. Tsui, Chem. Rec. 2021, 21, 4015.
- 31L. S. Sharninghausen, A. F. Brooks, W. P. Winton, K. J. Makaravage, P. J. H. Scott, M. S. Sanford, J. Am. Chem. Soc. 2020, 142, 7362.
- 32J. R. Pliego, Mol. Catal. 2022, 529, 112560.
- 33J. R. Pliego, J. Organomet. Chem. 2022, 973-974, 122397.
- 34X. Mu, H. Zhang, P. Chen, G. Liu, Chem. Sci. 2014, 5, 275.
- 35T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
- 36D. V. Yandulov, N. T. Tran, J. Am. Chem. Soc. 2007, 129, 1342.
- 37D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. García-Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661.
- 38L. Cui, M. Saeys, ChemCatChem 2011, 3, 1060.
- 39J. R. Pliego, J. Phys. Chem. A 2019, 123, 9850.
- 40J. R. Pliego, Mol. Catal. 2021, 506, 111540.
- 41J. R. Pliego, Catal. Lett. 2024, 154, 4546.
- 42A. C. Sather, H. G. Lee, V. Y. De La Rosa, Y. Yang, P. Müller, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 13433.
- 43P. J. Milner, Y. Yang, S. L. Buchwald, Organometallics 2015, 34, 4775.
- 44P. J. Milner, T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 15757.
- 45H. G. Lee, P. J. Milner, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 3792.
- 46H. G. Lee, P. J. Milner, S. L. Buchwald, Org. Lett. 2013, 15, 5602.
- 47T. J. Maimone, P. J. Milner, T. Kinzel, Y. Zhang, M. K. Takase, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 18106.
- 48X. Sun, T. Hansen, J. Poater, T. A. Hamlin, F. M. Bickelhaupt, J. Comput. Chem. 2023, 44, 495.
- 49C. L. Oates, A. S. Goodfellow, M. Buhl, M. L. Clarke, Angew. Chem., Int. Ed. 2023, 62, e202212479.
- 50M. Dutta, H. K. Srivastava, A. Kumar, J. Comput. Chem. 2021, 42, 1728.
- 51I. Funes-Ardoiz, F. Schoenebeck, Chem 2020, 6, 1904.
- 52W. Matsuoka, Y. Harabuchi, S. Maeda, ACS Catal. 2022, 12, 3752.
- 53J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 54F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 55J. J. Zheng, X. F. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295.
- 56D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123.
- 57N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2016, 144, 214110.
- 58N. Mardirossian, M. Head-Gordon, Mol. Phys. 2017, 115, 2315.
- 59M. A. Iron, T. Janes, J. Phys. Chem. A 2019, 123, 3761.
- 60A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 61M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
- 62S. Grimme, Chem. – Eur. J. 2012, 18, 9955.
- 63F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606.
- 64F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
- 65I. Mayer, J. Comput. Chem. 2007, 28, 204.
- 66A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, J. J. Rothery, Chem. Soc., Dalton Trans. 2001, 2095.
10.1039/b102094n Google Scholar
- 67D. J. P. Kornfilt, D. W. C. MacMillan, J. Am. Chem. Soc. 2019, 141, 6853.
- 68N. Hoshiya, S. L. Buchwald, Adv. Synth. Catal. 2012, 354, 2031.