Facile heterolytic bond splitting of molecular chlorine upon reactions with Lewis bases: Comparison with ICl and I2
Anna V. Pomogaeva
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia
Search for more papers by this authorAnna S. Lisovenko
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia
Search for more papers by this authorCorresponding Author
Alexey Y. Timoshkin
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia
Correspondence
Alexey Y. Timoshkin, Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia.
Email: [email protected]
Search for more papers by this authorAnna V. Pomogaeva
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia
Search for more papers by this authorAnna S. Lisovenko
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia
Search for more papers by this authorCorresponding Author
Alexey Y. Timoshkin
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia
Correspondence
Alexey Y. Timoshkin, Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia.
Email: [email protected]
Search for more papers by this authorAbstract
Formation of molecular complexes and subsequent heterolytic halogen-halogen bond splitting upon reactions of molecular Cl2 with nitrogen-containing Lewis bases (LB) are computationally studied at M06-2X/def2-TZVPD and for selected compounds at CCSD(T)/aug-cc-pvtz//CCSD/aug-cc-pvtz levels of theory. Obtained results are compared with data for ICl and I2 molecules. Reaction pathways indicate, that in case of Cl2∙LB complexes the activation energies for the heterolytic Cl-Cl bond splitting are lower than the activation energies of the homolytic splitting of Cl2 molecule into chlorine radicals. The heterolytic halogen splitting of molecular complexes of X2∙Py with formation of [XPy2]+… contact ion pairs in the gas phase is slightly endothermic in case of Cl2 and I2, but slightly exothermic in the case of ICl. Formation of {[ClPy2]+…}2 dimers makes the overall process exothermic. Taking into account that polar solvents favor ionic species, generation of donor-stabilized Cl+ in the presence of the Lewis bases is expected to be favorable. Thus, in polar solvents the oxidation pathway via donor-stabilized Cl+ species is viable alternative to the homolytic Cl-Cl bond breaking.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
jcc27507-sup-0001-Supinfo.pdfPDF document, 503.7 KB | Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1E. T. McBee, H. B. Hass, C. M. Neher, H. Strickland, Ind. Eng. Chem. 1942, 34, 296.
- 2N. Barnwell, P. Cornwall, D. Horner, J. Knott, J. Liddon, Org. Process Res. Dev. 2010, 14, 278.
- 3J. Wicha, A. Zarecki, Tetrahedron Lett. 1974, 35, 3059.
10.1016/S0040-4039(01)91821-0 Google Scholar
- 4G. R. Desiraju, P. Shing Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem. 2013, 85, 1711.
- 5D. M. Williams, J. Chem. Soc. 1931, 2783.
- 6C. Ouvrard, J.-Y. Le Questel, M. Berthelot, C. Laurence, Acta Cryst. B 2003, B59, 512.
- 7A. J. Coury, P. T. Cahalan, J. Electrochem. Soc. 1980, 127, 2119.
- 8A. C. Legon, Phys. Chem. Chem. Phys. 2010, 12, 7736.
- 9A. C. Legon, Chem. Phys. Lett. 1995, 237, 291 and references therein.
- 10A. C. Legon, Angew. Chem., Int. Ed. 1999, 38, 2686.
10.1002/(SICI)1521-3773(19990917)38:18<2686::AID-ANIE2686>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 11A. Y. Timoshkin, Chem. – Eur. J. 2024, 30, e202302457.
- 12J. M. Kimel'fel'd, L. M. Mostovaja, Adv. Molec. Relaxation Inter. Proc. 1977, 11, 211.
10.1016/0378-4487(77)80032-0 Google Scholar
- 13A. V. Pomogaeva, A. S. Lisovenko, A. Y. Timoshkin, J. Comput. Chem. 2024, 45, 903.
- 14A. V. Pomogaeva, A. S. Lisovenko, A. Y. Timoshkin, Russ. J. Gen. Chem. 2024, 91, S40.
10.1134/S1070363224140068 Google Scholar
- 15P. R. Varadwaj, A. Varadwaj, H. M. Marques, Inorganics 2019, 7, 11.
- 16L. Turunen, M. Erdélyi, Chem. Soc. Rev. 2020, 49, 2688.
- 17S. Guha, I. Kazi, A. Nandy, G. Sekar, Eur. J. Org. Chem. 2017, 2017, 5497.
- 18J. D. Velasquez, J. Echeverría, S. Alvarez, Inorg. Chem. 2023, 62, 8980.
- 19P. Pröhm, W. Berg, S. M. Rupf, C. Müllera, S. Riedel, Chem. Sci. 2023, 14, 2325.
- 20Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 21D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.
- 22K. Fukui, Acc. Chem. Res. 1981, 14, 363.
- 23S. Kozuch, J. M. L. Martin, J. Chem.Theory Comput. 2013, 9, 1918.
- 24A. Forni, S. Pieraccini, S. Rendine, F. Gabas, M. Sironi, ChemPhysChem 2012, 13, 4224.
- 25M. H. Kolář, P. Hobza, Chem. Rev. 2016, 116, 5155.
- 26F. Liu, L. Du, D. Zhang, J. Gao, Int. J. Quant. Chem. 2016, 116, 710.
- 27A. Siiskonen, A. Priimagi, J. Molec, Modeling 2017, 23, 50.
- 28F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 29J. Cížek, in Advances in Chemical Physics, Vol. 14 (Ed: P. C. Hariharan), Wiley Interscience, New York 1969, p. 35.
10.1002/9780470143599.ch2 Google Scholar
- 30G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
- 31K. A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 2003, 119, 11113.
- 32K. A. Peterson, B. C. Shepler, D. Figgen, H. Stoll, J. Phys. Chem. A 2006, 110, 13877.
- 33M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT 2016.
- 34A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736.
- 35A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
- 36R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, USA 1994.
- 37A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397.
- 38E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
- 39T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 40H. Zhuo, Q. Li, W. Lia, J. Cheng, Phys. Chem. Chem. Phys. 2014, 16, 159.
- 41J. Emsley, The elements, Clarendon Press, Oxford 1991.
- 42C. Narth, Z. Maroun, C. R. Boto, M.-L. Bonnet, J.-P. Piquemal, J. Contreras-Garcia, in Applications of Topological Methods in Molecular Chemistry, Vol. 22 (Eds: E. Alikhani, R. Chauvin, C. Lepetit, B. Silvi), Springer, Berlin, Germany 2016, p. 491.
10.1007/978-3-319-29022-5_18 Google Scholar
- 43E. Munusamy, R. Sedlak, P. Hobza, ChemPhysChem 2011, 12, 3253.
- 44Y. V. Prokudina, E. I. Davydova, A. Virovets, B. Stöger, E. Peresypkina, A. V. Pomogaeva, A. Y. Timoshkin, Chem. – Eur. J. 2020, 9, 16338.
10.1002/chem.202002261 Google Scholar
- 45Y. Yarwood, W. B. Person, J. Am. Chem. Soc. 1968, 90, 594.
- 46G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
- 47W. Wang, Y. Zhang, B. Ji, A. Tian, J. Chem. Phys. 2011, 134, 224303.
- 48E. Espinosa, D. E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170.
- 49A. V. Iogansen, Spectrochim. Acta 1999, A 55, 1585.
10.1016/S1386-1425(98)00348-5 Google Scholar
- 50Y. V. Nelyubina, M. Y. Antipin, K. A. Lyssenko, Russ. Chem. Rev. 2010, 79, 167.
- 51E. V. Bartashevich, V. G. Tsirelson, Russ. Chem. Rev. 2014, 83, 1181.
- 52M. L. Kuznetsov, Molecules 2019, 24, 2733.
- 53E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 2002, 117, 5529.
- 54S. B. Hakkert, M. Erdélui, J. Phys. Org. Chem. 2015, 28, 226.
- 55A. Karim, M. Reitti, A.-C. C. Carlsson, J. Gräfenstein, M. Erdélui, Chem. Sci. 2014, 5, 3226.
- 56A. Ebrahimi, H. Razmazma, H. S. Delarami, Phys. Chem. Res. 2016, 4, 1.
- 57D. C. Georgiou, P. Butler, E. C. Browne, D. J. D. Wilson, J. L. Dutton, Aust. J. Chem. 2013, 66, 1179.
- 58H. Keil, K. Sonnenberg, C. Müller, R. Herbst-Irmer, H. Beckers, S. Riedel, D. Stalke, Angew. Chem., Int. Ed. 2021, 60, 2569.
- 59Y. G. Lazarou, A. V. Prosmitis, V. C. Papadimitriou, P. Papagiannakopoulos, J. Phys. Chem. A 2001, 105, 6729.
- 60V. Gutmann, Coord. Chem. Rev. 1976, 18, 225.
- 61R. Brückner, H. Haller, S. Steinhauer, C. Müller, S. Riedel, Angew. Chem., Int. Ed. 2015, 54, 15579.
- 62R. T. Boere, A. W. Cordes, R. T. Oakley, R. W. Reed, J. Chem. Soc. Chem. Comm. 1985, 655.
- 63R. T. Boere, A. W. Cordes, S. L. Craig, R. T. Oakley, R. W. Reed, J. Am. Chem. Soc. 1987, 109, 868.
- 64T. Chivers, J. F. Richardson, N. R. M. Smith, Inorg. Chem. 1985, 24, 2453.
- 65H. Wu, G. N. Andrew, R. Anumula, Z. Luo, Chin. Chem. Lett. 2024, 35, 108340.
- 66A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.
- 67A. V. Pomogaeva, A. S. Lisovenko, A. Y. Timoshkin, J. Comput. Chem. submitted.