Optimized infrared spectrum of mixtures
D. P. Freitas
Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
Search for more papers by this authorF. N. N. Pansini
Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
Search for more papers by this authorCorresponding Author
A. J. C. Varandas
Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
Department of Physics, Qufu Normal University, Qufu, China
Department of Chemistry, and Chemistry Centre, University of Coimbra, Coimbra, Portugal
Correspondence
A. J. C. Varandas, Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitoria, Brazil.
Email: [email protected]
Search for more papers by this authorD. P. Freitas
Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
Search for more papers by this authorF. N. N. Pansini
Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
Search for more papers by this authorCorresponding Author
A. J. C. Varandas
Departamento de Física, Universidade Federal do Espírito Santo, Vitoria, Brazil
Department of Physics, Qufu Normal University, Qufu, China
Department of Chemistry, and Chemistry Centre, University of Coimbra, Coimbra, Portugal
Correspondence
A. J. C. Varandas, Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitoria, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
Using density functional theory at D3-B3LYP/aug-cc-pVDZ level combined with the conductor-like polarizable continuum model (CPCM) solvent model, a study of the IR spectrum of :HCN mixtures is reported. The CPCM solvent effect notably enhances the accuracy of the IR spectra compared to gas-phase calculations, while the dielectric constant value has minimum impact on the final spectrum. An optimized methodology is suggested that effectively minimizes the root mean square deviation between theoretical and experimental data. This novel approach not only enhances the quality of the final IR spectra but also captures relevant spectral features, highlighting its potential to decipher molecular interactions in such intricate mixtures.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jcc27491-sup-0001-supinfo.pdfPDF document, 3.8 MB | Appendix S1: Supplemental Material. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1I. Brandão, R. Rivelino, T. Fonseca, M. Castro, Chem. Phys. Lett. 2013, 580, 9.
- 2P. Chaudhuri, L. C. Ducati, A. Ghosh, Mol. Phys. 2019, 117, 693.
- 3M. Adrian-Scotto, D. Vasilescu, J. Mol. Struct.: THEOCHEM 2007, 803, 45.
- 4E. M. Kabadi, S. S. Pingale, Mater. Today: Proc. 2022, 48, 599.
- 5M. Sánchez, P. F. Provasi, G. A. Aucar, I. Alkorta, J. Elguero, J. Phys. Chem. B 2005, 109, 18189.
- 6F. N. N. Pansini, A. J. C. Varandas, Chem. Phys. Lett. 2022, 801, 139739.
- 7D. Li, D. Zhao, Y. Huang, H. Shen, M. Deng, Mol. Simul. 2024, 50, 1.
10.1080/08927022.2023.2267681 Google Scholar
- 8Y.-Y. Zhang, H. Zheng, T. Wang, S. Jiang, W. Yan, C. Wang, Y. Zhao, J.-B. Lu, H.-S. Hu, J. Yang, W. Zhang, G. Wu, H. Xie, G. Li, L. Jiang, X. Yang, J. Li, J. Phys. Chem. Lett. 2024, 15, 3055.
- 9J.-J. Max, C. Chapados, J. Chem. Phys. 2009, 131, 184505.
- 10A. A. Kananenka, J. L. Skinner, J. Chem. Phys. 2018, 148, 244107.
- 11P. H. Abelson, Proc. Natl. Acad. Sci. USA 1966, 55, 1365.
- 12J. Oró, A. Kimball, Arch. Biochem. Biophys. 1961, 94, 217.
- 13Z. R. Todd, K. I. Öberg, Astrobiology 2020, 20, 1109.
- 14J. Xu, D. J. Ritson, S. Ranjan, Z. R. Todd, D. D. Sasselov, J. D. Sutherland, Chem. Commun. 2018, 54, 5566.
- 15D. P. Freitas, F. N. N. Pansini, A. J. C. Varandas, Chem. Phys. Lett. 2023, 828, 140734.
- 16P. A. Gerakines, Y. Y. Yarnall, R. L. Hudson, Mon. Not. R. Astron. Soc. 2022, 509, 3515.
- 17H. S. Gutowsky, T. C. Germann, J. D. Augspurger, C. E. Dykstra, J. Chem. Phys. 1992, 96, 5808.
- 18P. A. Gerakines, M. H. Moore, R. L. Hudson, Icarus 2004, 170, 202.
- 19G. Danger, A. Rimola, N. A. Mrad, F. Duvernay, G. Roussin, P. Theule, T. Chiavassa, Phys. Chem. Chem. Phys. 2014, 16, 3360.
- 20A. J. Fillery-Travis, A. C. Legon, L. C. Willoughby, J. Phys. Chem. A 1984, 396, 405.
- 21A. Heikkilä, M. Pettersson, J. Lundell, L. Khriachtchev, M. Räsänen, J. Phys. Chem. A 1999, 103, 2945.
- 22R. Rivelino, S. Canuto, J. Phys. Chem. A 2001, 105, 11260.
- 23T. Malaspina, E. E. Fileti, J. M. Riveros, S. Canuto, J. Phys. Chem. A 2006, 110, 10303.
- 24R. Rivelino, S. Canuto, Chem. Phys. Lett. 2000, 322, 207.
- 25D. M. Smith, J. Smets, Y. Elkadi, L. Adamowicz, Chem. Phys. Lett. 1998, 288, 609.
- 26F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
- 27D. B. Axel, J. Chem. Phys. 1993, 98, 5648.
- 28C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 29S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 30L. Goerigk, S. Grimme, J. Chem. Phys. 2010, 132, 184103.
- 31V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
- 32A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 33H. Looyenga, Physica 1965, 31, 401.
- 34T. Nagai, S. Prakongpa, Chem. Pharm. Bull. 1984, 32, 340.
- 35L. Neumaier, J. Schilling, A. Bardow, J. Gross, Fluid Phase Equilib. 2022, 555, 113346.
- 36C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, ACM Trans. Math. Softw. 1997, 23, 550.
- 37A. M. Sasson, IEEE Trans. Power Appar. Syst. 1969, PAS-88, 1530.
10.1109/TPAS.1969.292281 Google Scholar
- 38F. Gao, L. Han, Comput. Optim. Appl. 2012, 51, 259.
- 39P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, Nat. Methods 2020, 17, 261.
- 40E. Rudberg, E. H. Rubensson, P. Sałek, A. Kruchinina, SoftwareX 2018, 7, 107.
- 41E. Rudberg, E. H. Rubensson, P. Sałek, A. Kruchinina, ErgoSCF: XYZ—water clusters. http://www.ergoscf.org/xyz/h2o.php (accessed: June, 2024).
- 42B. Maribo-Mogensen, G. M. Kontogeorgis, K. Thomsen, J. Phys. Chem. B 2013, 117, 3389.
- 43S. J. Suresh, V. M. Naik, J. Chem. Phys. 2002, 116, 4212.
- 44S. Pilling, V. S. Bonfim, RSC Adv. 2020, 10, 5328.
- 45D. P. Fernández, Y. Mulev, A. R. H. Goodwin, J. M. H. L. Sengers, J. Phys. Chem. Ref. Data 1995, 24, 33.
- 46W. Dannhauser, A. F. Flueckinger, J. Chem. Phys. 2004, 38, 69.
10.1063/1.1733497 Google Scholar
- 47F. Pansini, M. de Campos, A. Neto, C. Sergio, Chem. Phys. 2020, 535, 110778.
- 48A. J. C. Varandas, J. Chem. Phys. 2022, 157, 174110.
- 49M. Saunders, J. Comput. Chem. 2004, 25, 621.