Energy and spectroscopic parameters of neutral and cations isomers of the CnH2 (n = 2–6) families using high-level ab-initio approaches
Corresponding Author
Lenin J. Díaz Soto
Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Rio de Janeiro, Brazil
Correspondence
Lenin J. Díaz Soto, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, Rio de Janeiro 21949-900, Brazil.
Email: [email protected]
Search for more papers by this authorRicardo R. Oliveira
Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Rio de Janeiro, Brazil
Search for more papers by this authorLeonardo Baptista
Departamento de Química e Ambiental, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Resende, Brazil
Search for more papers by this authorEnio F. da Silveira
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
Search for more papers by this authorMarco Antonio Chaer Nascimento
Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Rio de Janeiro, Brazil
Search for more papers by this authorCorresponding Author
Lenin J. Díaz Soto
Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Rio de Janeiro, Brazil
Correspondence
Lenin J. Díaz Soto, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, Rio de Janeiro 21949-900, Brazil.
Email: [email protected]
Search for more papers by this authorRicardo R. Oliveira
Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Rio de Janeiro, Brazil
Search for more papers by this authorLeonardo Baptista
Departamento de Química e Ambiental, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Resende, Brazil
Search for more papers by this authorEnio F. da Silveira
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
Search for more papers by this authorMarco Antonio Chaer Nascimento
Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Rio de Janeiro, Brazil
Search for more papers by this authorAbstract
Cationic species, previously detected from ion-induced desorption of solid methane by plasma desorption mass spectrometry (PDMS), and neutral species, are investigated using high-level ab-initio approaches. From a set of 25 cationic and 26 neutral structures belonging to CnH2 (n = 2–6) families, it was obtained the energy, rotational constants, harmonic vibrational frequency, charge distribution and excitation energies. The ZPVE-corrected energies, at CCSD(T)-F12; CCSD(T)-F12/RI/(cc-pVTZ-F12, cc-pVTZ-F12-CABS, cc-pVQZ/C) (n = 2–5) and CCSD(T)/cc-pVTZ (n = 6) levels, reveal that the topology of the most stable isomer vary with n and the charge. Out of 674 harmonic frequencies, those with maximum intensity are generally in the 3000–3500 cm−1 range. Analysis of 169 vertical transition energies calculated with the EOM-CCSD approach, suggest three C6H2 species as potential carriers of the diffuse interstellar bands (DIB). Systematic comparison of properties between neutral and cationic species can assist in the structural description of complex matrices.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
jcc27485-sup-0001-Supinfo.pdfPDF document, 1.3 MB | Data S1: Supplementary Material. |
jcc27485-sup-0002-DataS1.zipZip archive, 12.9 KB | Data S2: Supplementary Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. Bhargava, P. R. Westmoreland, Combust. Flame 1998, 113, 333.
- 2H. Richter, J. B. Howard, Phys. Chem. Chem. Phys. 2002, 4, 2038.
- 3C. A. Taatjes, S. J. Klippenstein, N. Hansen, J. A. Miller, T. A. Cool, J. Wang, M. E. Law, P. R. Westmoreland, Phys. Chem. Chem. Phys. 2005, 7, 806.
- 4G. Da Silva, J. Phys. Chem. A 2017, 121, 2086.
- 5C. J. Moon, S. Erukala, A. J. Feinberg, A. Singh, M. Y. Choi, A. F. Vilesov, J. Chem. Phys. 2023, 158, 224307.
- 6H.-W. Jochims, M. Schwell, H. Baumgärtel, S. Leach, Chem. Phys. 2005, 314, 263.
- 7P. Thaddeus, J. M. Vrtilek, C. A. Gottlieb, Astrophys. J. 1985, 299, L63.
- 8T. J. Millar, C. Walsh, T. A. Field, Chem. Rev. 2017, 117, 1765.
- 9H. Rothard, A. Domaracka, P. Boduch, M. E. Palumbo, G. Strazzulla, E. F. Da Silveira, E. Dartois, J. Phys. B: At., Mol. Opt. Phys. 2017, 50, 062001.
10.1088/1361-6455/50/6/062001 Google Scholar
- 10R. Martinez, V. Bordalo, E. F. Da Silveira, H. M. Boechat-Roberty, Mon. Not. R. Astron. Soc. 2014, 444, 3317.
10.1093/mnras/stu1400 Google Scholar
- 11F. Fantuzzi, L. Baptista, A. B. Rocha, E. F. da Silveira, Chem. Phys. 2013, 410, 109.
- 12M. Wagner, K. Wien, B. Curdes, E. R. Hilf, Nucl. Inst. Methods Phys. Res. B 1993, 82, 362.
- 13E. R. Hilf, W. Tuszynski, B. Curdes, J. Curdes, M. Wagner, K. Wien, Int. J. Mass Spectrom. Ion Processes 1993, 126, 101.
- 14A. G. G. M. Tielens, Rev. Mod. Phys. 2013, 85, 1021.
- 15L. Kluge, A. Stoffels, O. Asvany, S. Schlemmer, Astrophys. J. Lett. 2014, 783, L4.
10.1088/0004-637X/783/1/4 Google Scholar
- 16C. Cabezas, B. Tercero, M. Agúndez, N. Marcelino, J. R. Pardo, P. De Vicente, J. Cernicharo, Astron. Astrophys. 2021, 650, 1.
10.1051/0004-6361/202040210 Google Scholar
- 17J. Cernicharo, M. Agúndez, C. Cabezas, B. Tercero, N. Marcelino, J. R. Pardo, P. De Vicente, Astron. Astrophys. 2021, 649, 1.
10.1051/0004-6361/202142226 Google Scholar
- 18J. Cernicharo, M. Agúndez, C. Cabezas, R. Fuentetaja, B. Tercero, N. Marcelino, Y. Endo, J. R. Pardo, P. De Vicente, Astron. Astrophys. 2022, 657, L16.
- 19C. Cabezas, M. Agúndez, R. Fuentetaja, Y. Endo, N. Marcelino, B. Tercero, J. R. Pardo, P. De Vicente, J. Cernicharo, Astron. Astrophys. 2022, 663, L2.
- 20R. Fuentetaja, M. Agúndez, C. Cabezas, B. Tercero, N. Marcelino, J. R. Pardo, P. De Vicente, J. Cernicharo, Astron. Astrophys. 2022, 667, 1.
10.1051/0004-6361/202245018 Google Scholar
- 21B. A. McGuire, Astrophys. J. Suppl. Ser. 2022, 259, 30.
- 22R. I. Kaiser, Chem. Rev. 2002, 102, 1309.
- 23J. Cernicharo, A. M. Heras, A. G. G. M. Tielens, J. R. Pardo, F. Herpin, M. Guélin, L. B. F. M. Waters, Astrophys. J. 2001, 546, L123.
- 24P. J. Sarre, J. Mol. Spectrosc. 2006, 238, 1.
- 25W. C. Price, Phys. Rev. 1935, 47, 444.
- 26S. M. Burnett, A. E. Stevens, C. S. Feigerle, W. C. Lineberger, Chem. Phys. Lett. 1983, 100, 124.
- 27J. Levin, H. Feldman, A. Baer, D. Ben-Hamu, O. Heber, D. Zajfman, Z. Vager, Phys. Rev. Lett. 1998, 81, 3347.
- 28C. Baker, D. W. Turner, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1968, 308, 19.
- 29M. W. Crofton, M.-F. Jagod, B. D. Rehfuss, T. Oka, J. Chem. Phys. 1987, 86, 3755.
- 30J. L. Holmes, J. E. Szulejko, Chem. Phys. Lett. 1984, 107, 301.
- 31S. Hayakawa, M. Takahashi, K. Arakawa, N. Morishita, J. Chem. Phys. 1999, 110, 2745.
- 32R. A. Bernheim, R. J. Kempf, J. V. Gramas, P. S. Skell, J. Chem. Phys. 1965, 43, 196.
- 33H. P. Reisenauer, G. Maier, A. Riemann, R. W. Hoffmann, Angew. Chem., Int. Ed. 1984, 23, 641.
- 34T. Shimanouchi, NSRDS, U.S. 1972.
- 35K. D. Doney, D. Zhao, H. Linnartz, J. Mol. Spectrosc. 2015, 316, 54.
- 36N. P. Bowling, R. J. Halter, J. A. Hodges, R. A. Seburg, P. S. Thomas, C. S. Simmons, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc. 2006, 128, 3291.
- 37M. Steglich, J. Fulara, S. Maity, A. Nagy, J. P. Maier, J. Chem. Phys. 2015, 142, 244311.
- 38T. C. Killian, J. M. Vrtilek, C. A. Gottlieb, E. W. Gottlieb, P. Thaddeus, Astrophys. J. 1990, 365, L98.
10.1086/185895 Google Scholar
- 39M. J. Travers, M. C. McCarthy, C. A. Gottlieb, P. Thaddeus, Astrophys. J. 1997, 483, L135.
- 40C. A. Gottlieb, M. C. McCarthy, V. D. Gordon, J. M. Chakan, A. J. Apponi, P. Thaddeus, Astrophys. J. 1998, 509, L141.
- 41M. C. McCarthy, M. J. Travers, A. Kovács, W. Chen, S. E. Novick, C. A. Gottlieb, P. Thaddeus, Science (80-.) 2001, 275, 518.
10.1126/science.275.5299.518 Google Scholar
- 42R. A. Seburg, R. J. McMahon, J. F. Stanton, J. Gauss, J. Am. Chem. Soc. 1997, 119, 10838.
- 43P. P. Bera, R. Peverati, M. Head-Gordon, T. J. Lee, Phys. Chem. Chem. Phys. 2015, 17, 1859.
- 44V. S. Thimmakondu, A. Karton, Chem. Phys. 2018, 515, 411.
- 45K. D. Doey, D. Zhao, F. Stanton, H. Linnartz, Phys. Chem. Chem. Phys. 2017, 20, 5501.
- 46V. S. Thimmakondu, A. Karton, Molecules 2023, 28, 6537.
- 47H. Lee, J. H. Baraban, R. W. Field, J. F. Stanton, J. Phys. Chem. A 2013, 117, 11679.
- 48S. Boyé-Péronne, D. Gauyacq, J. Liévin, J. Chem. Phys. 2006, 124, 214305.
- 49J. Vázquez, M. E. Harding, J. Gauss, J. F. Stanton, J. Phys. Chem. A 2009, 113, 12447.
- 50A. Mohajeri, M. J. Jenabi, J. Mol. Struct. Theochem 2007, 820, 65.
- 51R. Herges, A. Mebel, J. Am. Chem. Soc. 1994, 116, 8229.
- 52R. A. Seburg, E. V. Patterson, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc. 1997, 119, 5847.
- 53R. A. Seburg, E. V. Patterson, R. J. McMahon, J. Am. Chem. Soc. 2009, 131, 9442.
- 54K. W. Sattelmeyer, J. F. Stanton, Phys. Chem. Chem. Phys. 2000, 122, 8220.
- 55M. Gronowski, R. Kołos, J. Krełowski, Chem. Phys. Lett. 2013, 582, 56.
- 56A. V. Marenich, S. V. Jerome, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2012, 8, 527.
- 57(a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc, Wallingford, CT 2010; (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc, Wallingford, CT 2016.
- 58F. Neese, WIREs Comput. Mol. Sci. 2017, 8, e1327.
- 59C. Hattig, W. Klopper, K. Andreas, D. P. Tew, Chem. Rev. 2012, 112, 4.
- 60L. Kong, F. A. Bischoff, E. F. Valeev, Chem. Rev. 2012, 112, 75.
- 61R. J. Bartlett, M. Musial, Rev. Mod. Phys. 2007, 79, 291.
- 62V. Barone, J. Chem. Phys. 2005, 122, 014108.
- 63J. Simons, Annu. Rev. Phys. Chem. 2011, 62, 107.
- 64R. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 126.
- 65P. Thaddeus, M. C. McCarthy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57, 757.
- 66Y. Kabbadj, M. Herman, G. Di Lonardo, L. Fusina, J. W. C. Johns, J. Mol. Spectrosc. 1991, 150, 535.
- 67L. Bizzocchi, F. Tamassia, C. D. Esposti, L. Fusina, E. Canè, L. Dore, Mol. Phys. 2011, 109, 2181.
- 68R. Kuhn, J. P. Maier, M. Ochsner, Mol. Phys. 1986, 59, 441.
- 69V. H. Dibeler, R. M. Reese, J. Chem. Phys. 1964, 40, 2034.
- 70R. I. Kaiser, B. J. Sun, H. M. Lin, A. H. H. Chang, A. M. Mebel, O. Kostko, M. Ahmed, Astrophys. J. 2010, 719, 1884.
- 71S. H. Lee, W. J. Huang, Y. C. Lin, C. H. Chin, Astrophys. J. 2012, 759, 75.
10.1088/0004-637X/759/1/75 Google Scholar
- 72J. M. Vrtilek, C. A. Gottlieb, E. W. Gottlieb, T. C. Killian, P. Thaddeus, Astrophys. J. 1990, 364, L53.
- 73M. C. McCarthy, M. J. Travers, A. Kovacs, C. A. Gottlieb, P. Thaddeus, Astrophys. J. Suppl. Ser. 1997, 113, 105.
- 74H. Clauberg, D. W. Minsek, P. Chen, J. Am. Chem. Soc. 1992, 114, 99.
- 75H. Clauberg, P. Chen, J. Am. Chem. Soc. 1991, 113, 1445.
- 76M. C. McCarthy, P. Thaddeus, Astrophys. J. 2002, 569, L55.
- 77C. He, G. R. Galimova, Y. Luo, L. Zhao, A. K. Eckhardt, R. Sun, A. M. Mebel, R. I. Kaiser, Proc. Natl. Acad. Sci. USA 2020, 117, 30142.
- 78A. G. Watrous, B. R. Westbrook, R. C. Fortenberry, Front. Astron. Space Sci. 2022, 9, 1.
10.3389/fspas.2022.1051535 Google Scholar
- 79S. A. Kucharski, R. J. Bartlett, J. Chem. Phys. 1992, 97, 4282.
- 80J. Qi, H. Zhu, Chem. Phys. 2014, 431–432, 20.
- 81J. P. Sánchez, N. F. Aguirre, S. Díaz-Tendero, F. Martín, M. Alcamí, J. Phys. Chem. A 2016, 120, 588.
- 82I. Bâldea, Adv. Theory Simul. 2022, 5, 1.
- 83J. C. Santos, F. Fantuzzi, H. M. Quitián-Lara, Y. Martins-Franco, K. Menéndez-Delmestre, H. M. Boechat-Roberty, R. R. Oliveira, Mon. Not. R. Astron. Soc. 2022, 512, 4669.
- 84R. R. Oliveira, G. Molpeceres, R. Monserrat, F. Fantuzzi, A. B. Rocha, J. Kästner, Phys. Chem. Chem. Phys. 2023, 25, 25746.
- 85K. M. Ervin, J. Ho, W. C. Lineberger, J. Chem. Phys. 1989, 91, 5974.
- 86J. W. Huang, W. R. M. Graham, J. Chem. Phys. 1990, 93, 1583.
- 87C. Puzzarini, J. F. Stanton, Phys. Chem. Chem. Phys. 2022, 25, 1421.
10.1039/D2CP04706C Google Scholar
- 88Y. Zhang, L. Wang, Y. Li, J. Zhang, J. Chem. Phys. 2013, 138, 204303.
- 89S. Hamano, N. Kobayashi, H. Kawakita, K. Takenaka, Y. Ikeda, N. Matsunaga, S. Kondo, H. Sameshima, K. Fukue, S. Otsubo, A. Arai, C. Yasui, H. Kobayashi, G. Bono, I. Saviane, Astrophys. J. Suppl. Ser. 2022, 262, 1.
10.3847/1538-4365/ac7567 Google Scholar
- 90M. Araki, H. Linnartz, P. Kolek, H. Ding, A. Boguslavskiy, A. Denisov, T. W. Schmidt, T. Motylewski, P. Cias, J. P. Maier, Astrophys. J. 2004, 616, 1301.
- 91J. P. Maier, G. A. H. Walker, D. A. Bohlender, F. J. Mazzotti, R. Raghunandan, J. Fulara, I. Garkusha, A. Nagy, A. Nagy, Astrophys. J. 2011, 726, 1.
10.1088/0004-637X/726/1/41 Google Scholar
- 92J. Huang, T. Oka, Mol. Phys. 2015, 113, 2159.
- 93T. Motylewski, H. Linnartz, O. Vaizert, J. P. Maier, G. A. Galazutdinov, F. A. Musaev, J. Krełowski, G. A. H. Walker, D. A. Bohlender, Astrophys. J. 2000, 531, 312.
- 94A. Dzhonson, E. B. Jochnowitz, J. P. Maier, J. Phys. Chem. A 2007, 111, 1887.
- 95S. J. P. Marlton, C. Liu, P. Watkins, E. J. Bieske, Phys. Chem. Chem. Phys. 2024, 26, 12306.
Citing Literature
December 15, 2024
Pages 2793-2804