CHARMM-GUI DEER facilitator for spin-pair distance distribution calculations and preparation of restrained-ensemble molecular dynamics simulations
Corresponding Author
Yifei Qi
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorJumin Lee
Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015
Search for more papers by this authorXi Cheng
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
Search for more papers by this authorRong Shen
Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, Chicago, Illinois, 60637
Search for more papers by this authorCorresponding Author
Shahidul M. Islam
Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Benoît Roux
Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, Chicago, Illinois, 60637
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Wonpil Im
Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yifei Qi
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorJumin Lee
Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015
Search for more papers by this authorXi Cheng
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
Search for more papers by this authorRong Shen
Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, Chicago, Illinois, 60637
Search for more papers by this authorCorresponding Author
Shahidul M. Islam
Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Benoît Roux
Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, Chicago, Illinois, 60637
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Wonpil Im
Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorAbstract
The double electron–electron resonance (DEER) is a powerful structural biology technique to obtain distance information in the range of 18 to 80 å by measuring the dipolar coupling between two unpaired electron spins. The distance distributions obtained from the experiment provide valuable structural information about the protein in its native environment that can be exploited using restrained ensemble molecular dynamics (reMD) simulations. We present a new tool DEER Facilitator in CHARMM-GUI that consists of two modules Spin-Pair Distributor and reMD Prepper to setup simulations that utilize information from DEER experiments. Spin-Pair Distributor provides a web-based interface to calculate the spin-pair distance distribution of labeled sites in a protein using MD simulations. The calculated distribution can be used to guide the selection of the labeling sites in experiments as well as validate different protein structure models. reMD Prepper facilities the setup of reMD simulations using different types of spin labels in four different environments including vacuum, solution, micelle, and bilayer. The applications of these two modules are demonstrated with several test cases. Spin-Pair Distributor and reMD Prepper are available at http://www.charmm-gui.org/input/deer and http://www.charmm-gui.org/input/deerre. DEER Facilitator is expected to facilitate advanced biomolecular modeling and simulation, thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems based on experimental DEER data. © 2019 Wiley Periodicals, Inc.
Supporting Information
Filename | Description |
---|---|
jcc26032-sup-0001-supinfo.pdfPDF document, 1.4 MB | Appendix S1: Supporting information |
jcc26032-sup-0001-MovieS1.mpgMPEG video, 9 MB | Video S1 Supporting information |
jcc26032-sup-0002-MovieS2.mpgMPEG video, 9.6 MB | Video S2 Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Jeschke, Annu. Rev. Phys. Chem. 2012, 63, 419.
- 2W. L. Hubbell, H. S. Mchaourab, C. Altenbach, M. A. Lietzow, Structure 1996, 4, 779.
- 3M. H. Tessmer, D. M. Anderson, A. M. Pickrum, M. O. Riegert, R. Moretti, J. Meiler, J. B. Feix, D. W. Frank, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 525.
- 4S. M. Islam, R. A. Stein, H. S. McHaourab, B. Roux, J. Phys. Chem. B 2013, 117, 4740.
- 5B. Roux, S. M. Islam, J. Phys. Chem. B 2013, 117, 4733.
- 6S. M. Islam, B. Roux, J. Phys. Chem. B 2015, 119, 3901.
- 7Y. Polyhach, E. Bordignon, G. Jeschke, Phys. Chem. Chem. Phys. 2011, 13, 2356.
- 8M. M. Hatmal, Y. Li, B. G. Hegde, P. B. Hegde, C. C. Jao, R. Langen, I. S. Haworth, Biopolymers 2012, 97, 35.
- 9G. Hagelueken, R. Ward, J. H. Naismith, O. Schiemann, Appl. Magn. Reson. 2012, 42, 377.
- 10E. J. Hustedt, F. Marinelli, R. A. Stein, J. D. Faraldo-Gomez, H. S. McHaourab, Biophys. J. 2018, 115, 1200.
- 11F. Marinelli, J. D. Faraldo-Gomez, Biophys. J. 2015, 108, 2779.
- 12G. Hummer, J. Kofinger, J. Chem. Phys. 2015, 143, 243150.
- 13K. Reichel, L. S. Stelzl, J. Kofinger, G. Hummer, J Phys Chem Lett 2018, 9, 5748.
- 14D. Matthies, O. Dalmas, M. J. Borgnia, P. K. Dominik, A. Merk, P. Rao, B. G. Reddy, S. Islam, A. Bartesaghi, E. Perozo, S. Subramaniam, Cell 2016, 164, 747.
- 15K. Kazmier, S. Sharma, S. M. Islam, B. Roux, H. S. McHaourab, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14752.
- 16C. Kang, C. Tian, F. D. Sonnichsen, J. A. Smith, J. Meiler, A. L. George, Jr., C. G. Vanoye, H. J. Kim, C. R. Sanders, Biochemistry 2008, 47, 7999.
- 17A. Yamashita, S. K. Singh, T. Kawate, Y. Jin, E. Gouaux, Nature 2005, 437, 215.
- 18H. Krishnamurthy, E. Gouaux, Nature 2012, 481, 469.
- 19J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
- 20B. R. Brooks, C. L. Brooks, III., A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
- 21H. Raghuraman, S. M. Islam, S. Mukherjee, B. Roux, E. Perozo, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1831.
- 22K. Kazmier, S. Sharma, M. Quick, S. M. Islam, B. Roux, H. Weinstein, J. A. Javitch, H. S. McHaourab, Nat. Struct. Mol. Biol. 2014, 21, 472.
- 23I. G. Tikhonova, R. B. Best, S. Engel, M. C. Gershengorn, G. Hummer, S. Costanzi, J. Am. Chem. Soc. 2008, 130, 10141.
- 24M. C. Puljung, H. A. DeBerg, W. N. Zagotta, S. Stoll, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9816.
- 25M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1-2, 19.
10.1016/j.softx.2015.06.001 Google Scholar
- 26D. A. Case, T. E. Cheatham, 3rd., T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr.., A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668.
- 27J. Jung, T. Mori, C. Kobayashi, Y. Matsunaga, T. Yoda, M. Feig, Y. Sugita, Wiley Interdiscip Rev. Comput. Mol. Sci. 2015, 5, 310.
- 28S. Plimpton, J. Comput. Phys. 1995, 117, 1.
- 29Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing; ACM: Tampa, FL, 2006, p 84.
- 30P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L. P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, V. S. Pande, PLoS Comput. Biol. 2017, 13, e1005659.
- 31S. Jo, X. Cheng, J. Lee, S. Kim, S. J. Park, D. S. Patel, A. H. Beaven, K. I. Lee, H. Rui, S. Park, H. S. Lee, B. Roux, A. D. MacKerell, Jr., J. B. Klauda, Y. Qi, W. Im, J. Comput. Chem. 2016, 38, 1114.
- 32S. Jo, X. Cheng, S. M. Islam, L. Huang, H. Rui, A. Zhu, H. S. Lee, Y. Qi, W. Han, K. Vanommeslaeghe, A. D. MacKerell, Jr.., B. Roux, W. Im, Adv. Protein Chem. Struct. Biol. 2014, 96, 235.
- 33S. Jo, T. Kim, V. G. Iyer, W. Im, J. Comput. Chem. 2008, 29, 1859.
- 34J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman, J. A. Lemkul, S. Wei, J. Buckner, J. C. Jeong, Y. Qi, S. Jo, V. S. Pande, D. A. Case, C. L. Brooks, 3rd., A. D. MacKerell, Jr.., J. B. Klauda, W. Im, J. Chem. Theory Comput. 2016, 12, 405.
- 35S. Jo, T. Kim, W. Im, PLoS One 2007, 2, e880.
- 36J. Lee, D. S. Patel, J. Stahle, S. J. Park, N. R. Kern, S. H. Kim, J. Lee, X. Cheng, M. A. Valvano, O. Holst, Y. A. Knirel, Y. Qi, S. Jo, J. B. Klauda, G. Widmalm, W. Im, J. Chem. Theory Comput. 2018, 15, 775.
- 37S. Jo, J. B. Lim, J. B. Klauda, W. Im, Biophys. J. 2009, 97, 50.
- 38E. L. Wu, X. Cheng, S. Jo, H. Rui, K. C. Song, E. M. Davila-Contreras, Y. Qi, J. Lee, V. Monje-Galvan, R. M. Venable, J. B. Klauda, W. Im, J. Comput. Chem. 2014, 35, 1997.
- 39Y. Qi, J. Lee, J. B. Klauda, W. Im, J. Comput. Chem. 2019, 40, 893.
- 40Y. Qi, X. Cheng, J. Lee, J. V. Vermaas, T. V. Pogorelov, E. Tajkhorshid, S. Park, J. B. Klauda, W. Im, Biophys. J. 2015, 109, 2012.
- 41X. Cheng, S. Jo, H. S. Lee, J. B. Klauda, W. Im, J. Chem. Inf. Model. 2013, 53, 2171.
- 42P. J. Steinbach, B. R. Brooks, J. Comput. Chem. 1994, 15, 667.
- 43R. Shen, W. Han, G. Fiorin, S. M. Islam, K. Schulten, B. Roux, PLoS Comput. Biol. 2015, 11, e1004368.
- 44S. E. Feller, Y. H. Zhang, R. W. Pastor, B. R. Brooks, J. Chem. Phys. 1995, 103, 4613.
- 45U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
- 46W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
- 47L. H. Weaver, B. W. Matthews, J. Mol. Biol. 1987, 193, 189.
- 48S. Weyand, T. Shimamura, S. Yajima, S. Suzuki, O. Mirza, K. Krusong, E. P. Carpenter, N. G. Rutherford, J. M. Hadden, J. O'Reilly, P. Ma, M. Saidijam, S. G. Patching, R. J. Hope, H. T. Norbertczak, P. C. Roach, S. Iwata, P. J. Henderson, A. D. Cameron, Science 2008, 322, 709.
- 49T. Shimamura, S. Weyand, O. Beckstein, N. G. Rutherford, J. M. Hadden, D. Sharples, M. S. Sansom, S. Iwata, P. J. Henderson, A. D. Cameron, Science 2010, 328, 470.
- 50M. E. Call, K. W. Wucherpfennig, J. J. Chou, Nat. Immunol. 2010, 11, 1023.