Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes
Corresponding Author
Robert A. Evarestov
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
E-mail: [email protected]Search for more papers by this authorAndrei V. Bandura
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
Search for more papers by this authorVitaly V. Porsev
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
Search for more papers by this authorAlexey V. Kovalenko
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
Search for more papers by this authorCorresponding Author
Robert A. Evarestov
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
E-mail: [email protected]Search for more papers by this authorAndrei V. Bandura
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
Search for more papers by this authorVitaly V. Porsev
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
Search for more papers by this authorAlexey V. Kovalenko
Quantum Chemistry Department, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russian Federation
Search for more papers by this authorAbstract
Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS2-based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc.
References
- 1 R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 1992, 360, 444.
- 2 A. Margolin, F. L. Deepak, R. Popovitz-Biro, M. Bar-Sadan, Y. Feldman, R. Tenne, Nanotechnology 2008, 19, 095601.
- 3 Q. Tang, Z. Zhou, Prog. Mater. Sci. 2013, 58, 1244.
- 4 V. Brüser, R. Popovitz-Biro, A. Albu-Yaron, T. Lorenz, G. Seifert, R. Tenne, A. Zak, Inorganics 2014, 2, 177.
- 5
H. S. S. Ramakrishna Matte,
A. Gomathi,
A. K. Manna,
D. J. Late,
R. Datta,
S. K. Pati,
C. N. R. Rao, Angew. Chem. 2010, 122, 4153.
10.1002/ange.201000009 Google Scholar
- 6 A. Enyashin, G. Seifert, In Handbook of Nanophysics 4: Nanotubes and Nanowires; K. D. Sattler, Ed.; CRC Press: Boca Raton, FL, 2010; pp. 12–1–12–22.
- 7 I. K. Ashiri, R. Tenne, J. Miner. Met. Mater. Soc. 2016, 68, 151.
- 8 R. Levi, O. Bitton, G. Leitus, R. Tenne, E. Joselevich, Nano Lett. 2013, 13, 3736.
- 9 Y. Q. Zhu, T. Sekine, K. S. Brigatti, S. Firth, R. Tenne, R. Rosentsveig, H. W. Kroto, D. R. M. Walton, J. Am. Chem. Soc. 2003, 125, 1329.
- 10 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147.
- 11 R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H. M. Albishri, A. S. Al-Bogami, D. Abd El-Hady, J. Lu, K. Amine, Nano Lett. 2014, 14, 5899.
- 12 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 13 A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 2011, 83, 245213.
- 14 J. P. Perdew, M. Emzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982.
- 15 C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 16 J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett. 2013, 102, 012111.
- 17 J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
- 18 Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Physica B 2011, 406, 2254.
- 19 A. Molina-Sánchez, L. Wirtz, Phys. Rev. B 2011, 84, 155413.
- 20 D. Çakır, F. M. Peeters, C. Sevik, Appl. Phys. Lett. 2014, 104, 203110.
- 21 G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 2000, 85, 146.
- 22 D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 1995, 51, 12947.
- 23 E. Dobardžić, B. Dakić, M. Damnjanović, I. Milošević, Phys. Rev. B 2005, 71, 121405(R).
- 24 M. Damnjanović, E. Dobardžić, I. Milošević, M. Viršek, M. Remškar, Mater. Manuf. Proc. 2008, 23, 579.
- 25 M. Damnjanović, T. Vuković, I. Milošević, Isr. J. Chem. 2017, 57, 450.
- 26 N. Zibouche, A. Kuc, T. Heine, Eur. Phys. J. B 2012, 85, 49.
- 27 P. M. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, R. Tenne, Phys. Rev. B 2005, 72, 205436.
- 28 M. Viršek, A. Jesih, I. Milošević, M. Damnjanović, M. Remškar, Surf. Sci. 2007, 601, 2868.
- 29 K. R. O'Neal, J. G. Cherian, A. Zak, R. Tenne, Z. Liu, J. L. Musfeldt, Nano Lett. 2016, 16, 993.
- 30 R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D'Arco, M. Llunell, M. Causà, Y. Noël, CRYSTAL14 User's Manual; University of Turin: Torino, Italy, 2014.
- 31
R. Saito,
G. Dresselhaus,
M. S. Dresselhaus, Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998.
10.1142/p080 Google Scholar
- 32 G. G. Samsonidze, R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza Filho, A. Grüneis, G. Dresselhaus, M. S. Dresselhaus, J. Nanosci. Nanotech. 2003, 3, 431.
- 33 L. F. Pacios, P. A. Christiansen, J. Chem. Phys. 1985, 82, 2664.
- 34 R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, P. A. Christiansen, J. Chem. Phys. 1990, 93, 6654.
- 35 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 36 S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- 37 C. Conesa, J. Phys. Chem. C 2010, 114, 22718.
- 38 A. V. Bandura, R. A. Evarestov, Surf. Sci. 2015, 641, 6.
- 39 F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 888.
- 40 M. T. Yin, M. L. Cohen, Phys. Rev. B 1982, 26, 3259.
- 41 D. C. Wallace, Thermodynamics of Crystals; Dover: New York, NY, 1998.
- 42 A. V. Bandura, V. V. Porsev, R. A. Evarestov, J. Comput. Chem. 2016, 37, 641.
- 43 W. J. Schutte, J. L. de Boer, F. Jellinek, J. Solid State Chem. 1987, 70, 207.
- 44 P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, J. Phys. Condens. Matter 1997, 9, 11085.
- 45 K. K. Kam, B. A. Parkinson, J. Phys. Chem. 1982, 86, 463.
- 46 The Crystallographic Site at the Condensed Matter; Physics Department of the University of the Basque Country. Available at: http://www.cryst.ehu.es/, accessed on June 10, 2017.
- 47 X. Gu, R. Yang, Appl. Phys. Lett. 2014, 105, 131903.
- 48 J. Ma, W. Li, X. Luo, Appl. Phys. Lett. 2016, 108, 082102.
- 49 X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Chem. Soc. Rev. 2015, 44, 2757.
- 50
M. Damnjanović,
I. Milošević, Line Groups in Physics: Theory and Applications to Nanotubes and Polymers; Springer: Berlin, Germany, 2010.
10.1007/978-3-642-11172-3 Google Scholar
- 51 R. A. Evarestov, Theoretical Modeling of Inorganic Nanostructures. Symmetry and ab-initio Calculations of Nanolayers, Nanotubes and Nanowires; Springer: Berlin - Heidelberg, 2015.
- 52 V. V. Porsev, A. V. Bandura, R. A. Evarestov, J. Comput. Chem. 2016, 37, 1442.
- 53 R. A. Evarestov, A. V. Bandura, V. V. Porsev, Lith. J. Phys. 2016, 56, 164.
- 54 R. A. Evarestov, A. V. Bandura, V. V. Porsev, A. V. Kovalenko, J. Comput. Chem. 2017, 38, 2088.
- 55 B. M. Wong, S. H. Ye, Phys. Rev. B 2011, 84, 075115.
- 56 H. A. Jahn, E. Teller, Proc. R. Soc. Lond. A 1937, 161, 220.
- 57 R. A. Evarestov, A. I. Panin, J. Comput. Chem. 2015, 36, 957.
- 58 G. Katzer, Character Tables for Point Groups used in Chemistry. Available at: http://gernot-katzers-spice-pages.com/character_tables/index.html, accessed on June 10, 2017.
- 59 J.-W. Jiang, Nanoscale 2014, 6, 8326.
- 60 M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A. F. Oliveira, A. Kuc, T. Heine, Sci. Rep. 2013, 3, 2961.
- 61 J. Hone, In Carbon Nanotubes; M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Eds.; Springer: Berlin - Heidelberg, 2001; pp. 273–286.