Fibronectin grafting to enhance skin sealing around transcutaneous titanium implant
Souhaila Ghadhab
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
Search for more papers by this authorIbrahim Bilem
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Search for more papers by this authorAndrée-Anne Guay-Bégin
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Search for more papers by this authorPascale Chevallier
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
Search for more papers by this authorFrançois A. Auger
CHU de Québec-Université Laval, LOEX, Aile-R, 1401 18ième Rue, Québec, Québec, G1J 1Z4 Canada
Search for more papers by this authorJean Ruel
Département de Génie mécanique, Université Laval, Québec, Canada
Search for more papers by this authorEmmanuel Pauthe
Biomaterials for Health Research Group, ERRMECe, Équipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), Cergy, France
Search for more papers by this authorCorresponding Author
Gaétan Laroche
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
Correspondence
Gaétan Laroche, Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada.
Email: [email protected]
Search for more papers by this authorSouhaila Ghadhab
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
Search for more papers by this authorIbrahim Bilem
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Search for more papers by this authorAndrée-Anne Guay-Bégin
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Search for more papers by this authorPascale Chevallier
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
Search for more papers by this authorFrançois A. Auger
CHU de Québec-Université Laval, LOEX, Aile-R, 1401 18ième Rue, Québec, Québec, G1J 1Z4 Canada
Search for more papers by this authorJean Ruel
Département de Génie mécanique, Université Laval, Québec, Canada
Search for more papers by this authorEmmanuel Pauthe
Biomaterials for Health Research Group, ERRMECe, Équipe de recherche sur les Relations Matrice Extracellulaire-Cellules (EA1391), Institut des matériaux I-MAT (FD4122), CY Tech, CY Cergy Paris University, Maison Internationale de la Recherche (MIR), Cergy, France
Search for more papers by this authorCorresponding Author
Gaétan Laroche
Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay⎜, Québec, Canada
Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
Correspondence
Gaétan Laroche, Laboratoire d'Ingénierie de Surface (LIS), Centre de Recherche sur les Matériaux Avancés (CERMA), Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada.
Email: [email protected]
Search for more papers by this authorFunding information: Natural Science and Engineering Research Council of Canada, Grant/Award Number: CRDPJ 492208-15; Natural Sciences and Engineering Research Council of Canada
Abstract
Intraosseous transcutaneous amputation prosthesis is a new approach in orthopedic implants that overcomes socket prosthesis problems. Its long-term performance requires a tight skin-implant seal to prevent infections. In this study, fibronectin (Fn), a widely used adhesion protein, was adsorbed or grafted onto titanium alloy. Fn grafting was performed using two different linking arms, dopamine/glutaric anhydride or phosphonate. The characterization of Fn-modified surfaces showed that Fn grating via phosphonate has led to the highest amount of Fn cell-binding site (RGD, arginine, glycine, and aspartate) available on the surface. Interestingly, cell culture studies revealed a strong correlation between the amount of available RGD ligands and cellular behavior, since enhanced proliferation and spreading of fibroblasts were noticed on Fn-grafted surfaces via phosphonate. In addition, an original in vitro mechanical test, inspired from the real situation, to better predict clinical outcomes after implant insertion, has been developed. Tensile test data showed that the adhesion strength of a bio-engineered dermal tissue was significantly higher around Fn-grafted surfaces via phosphonate, as compared to untreated surfaces. This study sheds light on the importance of an appropriate selection of the linking arm to tightly control the spatial conformation of biomolecules on the material surface, and consequently cell interactions at the interface tissue/implant.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
REFERENCES
- 1Ziegler-Graham K, Mackenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehab. 2008; 89: 422-429.
- 2Rommers GM, Vos LDW, Groothoff JW, Eisma WH. Clinical rehabilitation of the amputee: a retrospective study. Prosthet Orthot Int. 1996; 20: 72-78.
- 3Butler K, Bowen C, Hughes A-M, Torah R, Ayala I, Tudor J, Metcalf CD (2014). A systematic review of the key factors affecting tissue viability and rehabilitation outcomes of the residual limb in lower extremity traumatic amputees. Journal of Tissue Viability, 23, (3), 81–93.
- 4Dudek N, Marks MB, Marshall SC, Chardon JP. Dermatologic conditions associated with use of a lower-extremity prosthesis. Arch Phys Med Rehabil. 2005; 86(4), 659-663.
- 5Brånemark P-I, Chien, S, Gröndahl, H-G, Robinson, K. The Osseointegration Book: From Calvarium to Calcaneus. Berlin: Quintessence Verlags-GmbH; 2005.
- 6Pendegrass CJ, Goodship AE, Blunn GW. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Biomaterials. 2006; 27(23), 4183-4191.
- 7Kang NV, Pendegrass C, Marks L, Blunn G. Osseocutaneous integration of an Intraosseous transcutaneous amputation prosthesis implant used for reconstruction of a Transhumeral amputee: case report. J Hand Surg Am. 2010; 35(7), 1130-1134.
- 8Fitzpatrick N, Smith TJ, Pendegrass CJ, Yeadon R, Ring M, Goodship AE, Blunn GW (2011). Intraosseous Transcutaneous Amputation Prosthesis (ITAP) for Limb Salvage in 4 Dogs. Veterinary Surgery, n/a–n/a.
- 9Pitkin M. Design features of implants for direct skeletal attachment of limb prostheses. J Biomed Mater Res A. 2013; 101(11), 3339-3348.
- 10Pendegrass CJ, Gordon D, Middleton CA, Sun SNM, Blunn GW. Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy. J Bone Joint Surg Br. 2008; 90(1), 114-121.
- 11Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci. 2009; 54(3), 397-425.
- 12Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015; 87(201501), 1-57.
- 13Middleton CA, Pendegrass CJ, Gordon D, Jacob J, Blunn GW. Fibronectin silanized titanium alloy: a bioinductive and durable coating to enhance fibroblast attachment in vitro. J Biomed Mater Res A. 2007; 83(4), 1032-1038.
- 14Pendegrass CJ, Middleton CA, Gordon D, Jacob J, Blunn GW. Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro. J Biomed Mater Res A. 2010; 92: 1028-1037.
- 15McClary KB, Ugarova T, Grainger DW. Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res. 2000; 50: 428-439.
10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 16Yamada KM, Olden K. Fibronectins adhesive glycoproteins of cell surface and blood. Nature. 1978; 275(5677), 179-184.
- 17Kuzmenko V, Samfors S, Hagg D, Gatenholm P. Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mat Sci Eng C. 2013; 33(8), 4599-4607.
- 18Pendegrass CJ, Tucker B, Patel S, Dowling R, Blunn GW. The effect of adherens junction components on keratinocyte adhesion in vitro: potential implications for sealing the skin-implant interface of intraosseous transcutaneous amputation prostheses. J Biomed Mater Res A. 2012; 100(12), 3463-3471.
- 19Meadows PY, Walker GC. Force microscopy studies of fibronectin adsorption and subsequent cellular adhesion to substrates with well-defined surface chemistries. Langmuir. 2005; 21(9), 4096-4107.
- 20Keselowsky BG, Collard DM, García AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A. 2003; 66(2): 247-259.
- 21Gand A, Tabuteau M, Chat C, et al. Fibronectin-based multilayer thin films. Colloids Surf B. 2017; 156: 313-319.
- 22Vallières K, Petitclerc É, Laroche G. Covalent grafting of Fibronectin onto plasma-treated PTFE: influence of the conjugation strategy on Fibronectin biological activity. Macromol Biosci. 2007; 7: 738-745.
- 23Golachowski A, Al Ghabri MR, Golachowska B, Al Abri H, Lubak M, Sujeta M. Implantation of an Intraosseous transcutaneous amputation prosthesis restoring ambulation after amputation of the distal aspect of the left tibia in an Arabian Tahr (Arabitragus jayakari). Front Vet Sci. 2019; 6: 182.
- 24Siddique H. Amputee Hails New Prosthetic: 'it's Like They've Given Me My Leg Back'. 2014. London: The Guardian. https://www.theguardian.com/science/2014/aug/26/amputee-hails-pioneering-prosthetic-leg-artificial-limb
- 25Davis A. Survivor of 7/7 Bombings Fitted With Clip-On Arm Which Can Fuse With Her Skin. 2008. London: Evening Standard. https://www.dailymail.co.uk/health/article-1092793/Survivor-7-7-bombings-fitted-clip-arm-fuse-skin.html
- 26Gordon DJ, Bhagawati DD, Pendegrass CJ, Middleton CA, Blunn GW. Modification of titanium alloy surfaces for percutaneous implants by covalently attaching laminin. J Biomed Mater Res A. 2010; 94(2), 586-593.
- 27Peck M, Dusserre N, McAllister TN, L'Heureux N. Tissue engineering by self-assembly. Mater Today. 2011; 14(5), 218-224.
- 28Poulouin L, Gallet O, Rouahi M, Imhoff J-M. Plasma Fibronectin: three steps to purification and stability. Protein Expr Purif. 1999; 17(1), 146-152.
- 29Jean J, Lapointe M, Soucy J, Pouliot R. Development of an in vitro psoriatic skin model by tissue engineering. J Dermatol Sci. 2009; 53(1), 19-25.
- 30Ong LJ, Prince WC, Raikar NG, Lucas CL. Effect of surface topography of titanium on surface chemistry and cellular response. Implant Dent. 1996; 5(2), 83-90.
- 31Springer JC, Harrysson OLA, Marcellin-Little DJ, Bernacki SH. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting. Med Eng Phys. 2014; 36: 1367-1372.
- 32Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006; 17(S2): 68-81.
- 33Tosatti S, Michel R, Textor M, Spencer N. Self-assembled monolayers of dodecyl and hydroxy-dodecyl phosphates on both smooth and rough titanium and titanium oxide surfaces. Langmuir. 2002; 18: 3537-3548.
- 34Vanslambrouck S, Chevallier P, Guay-Bégin A-A, Laroche G. Effect of linking arm hydrophilic/hydrophobic nature, length and end-group on the conformation and the RGD accessibility of surface-immobilized fibronectin. Mater Sci Eng C. 2020; 107: 202002.
- 35Baujard-Lamotte L, Noinville S, Goubard F, Marque P, Pauthe E. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces. Colloids Surf B. 2008; 63(1), 129-137.
- 36Perdue JF. The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts. J Cell Biol. 1973; 58(2), 265-283.
- 37Vallières K, Chevallier P, Sarra-Bournet C, Turgeon S, Laroche G. AFM imaging of immobilized fibronectin: does the surface conjugation scheme affect the protein orientation/conformation? Langmuir. 2007; 23(19), 9745-9751.
- 38Pendegrass CJ, El-Husseiny M, Blunn GW. The development of fibronectin-functionalised hydroxyapatite coatings to improve dermal fibroblast attachment in vitro. J Bone Joint Surg Br. 2012; 94(4), 564-569.
- 39Wu J, Hirata I, Zhao X, Gao B, Okazaki M, Kato K. Influence of alkyl chain length on calcium phosphate deposition onto titanium surfaces modified with alkylphosphonic acid monolayers. J Biomed Mater Res A. 2013; 101(8), 2267-2272.
- 40Schwartz J, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Schwarzbauer JE, Midwood KS, Gawalt ES (2003). Cell attachment and spreading on metal implant materials. Materials Science and Engineering: C, 23(3), 395–400.
- 41Zwahlen M, Tosatti S, Textor M, Hahner G. Orientation in methyl- and hydroxyl-terminated self-assembled alkanephosphate monolayers on titanium oxide surfaces investigated with soft X-ray absorption. Langmuir. 2002; 18(10), 3957-3962.
- 42John A A, Subramanian AP, Vellayappan MV, Balaji A, Jaganathan SK, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M (2015). Review: physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Advances, 5(49), 39232–39244.
- 43Montaño-Machado V, Hugoni L, Díaz-Rodríguez S, Tolouei R, Chevallier P, Pauthe E, Mantovani D (2016). A comparison of adsorbed and grafted fibronectin coatings under static and dynamic conditions. Physical Chemistry Chemical Physics, 18(35), 24704–24712.
- 44Diaz-Rodriguez S, Loy C, Chevallier P, Noël C, Caligiuri G, Houssiau L, Mantovani D (2019). Comparison of the linking arm effect on the biological performance of a CD31 agonist directly grafted on L605 CoCr alloy by a plasma-based multistep strategy. Biointerphases, 14(5), 051009.
- 45El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6Al-4V implant material in vitro. J Biomed Mater. 1998; 41(1), 30-40.
- 46Chimutengwende-Gordon M, Pendegrass C, Blunn G. Enhancing the soft tissue seal around intraosseous transcutaneous amputation prostheses using silanized fibronectin titanium alloy. Biomed Mater. 2011; 6(2), 25008.