Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications
Sergii Golovynskyi
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorIuliia Golovynska
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorLudmila I. Stepanova
Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Search for more papers by this authorOleksandr I. Datsenko
Physics Faculty, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Search for more papers by this authorLiwei Liu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorCorresponding Author
Junle Qu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Correspondence
Junle Qu, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Tymish Y. Ohulchanskyy, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Tymish Y. Ohulchanskyy
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Correspondence
Junle Qu, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Tymish Y. Ohulchanskyy, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Search for more papers by this authorSergii Golovynskyi
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorIuliia Golovynska
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorLudmila I. Stepanova
Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Search for more papers by this authorOleksandr I. Datsenko
Physics Faculty, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Search for more papers by this authorLiwei Liu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorCorresponding Author
Junle Qu
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Correspondence
Junle Qu, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Tymish Y. Ohulchanskyy, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Tymish Y. Ohulchanskyy
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
Correspondence
Junle Qu, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Tymish Y. Ohulchanskyy, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Email: [email protected]
Search for more papers by this authorAbstract
Optical properties of the rat head tissues (brain cortex, cranial bone and scalp skin) are assessed, aiming at transcranial light applications such as optical imaging and phototherapy. The spectral measurements are carried out over the wide spectral range of 350 to 2800 nm, involving visible, near-infrared (NIR) and short-wave infrared (SWIR) regions. Four tissue transparency windows are considered: ~700 to 1000 nm (NIR-I), ~1000 to 1350 nm (NIR-II), ~1550 to 1870 nm (NIR-III or SWIR) and ~2100 to 2300 nm (SWIR-II). The values of attenuation coefficient and total attenuation length are determined for all windows and tissue types. The spectra indicate transmittance peaks in NIR, NIR-II and SWIR-II, with maximum tissue permeability for SWIR light. The use of SWIR-II window for the transcranial light applications is substantiated. Furthermore, absorbance of the head tissues is investigated in details, by defining and describing the characteristic absorption peaks in NIR-SWIR.
Supporting Information
Filename | Description |
---|---|
jbio201800141-sup-0001-author-biographies.docxapplication/docx, 485.1 KB | Author Biographies |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1P. N. Prasad, Introduction to Biophotonics, Wiley-Interscience, Hoboken, NJ 2003.
10.1002/0471465380 Google Scholar
- 2L. Teodori, A. Crupi, A. Costa, A. Diaspro, S. Melzer, A. Tarnok, J. Biophotonics 2017, 10, 24.
- 3Y. Li, S. J. Montague, A. Brüstle, X. He, C. Gillespie, K. Gaus, E. E. Gardiner, W. M. Lee, J. Biophotonics 2018, 11, e201700341.
- 4J. Titus, H. Ghimire, E. Viennois, D. Merlin, A. G. Unil Perera, J. Biophotonics 2018, 11, e201700057.
- 5S. L. Jacques, Phys. Med. Biol. 2013, 58, R37.
- 6J. A. Parrish, J. Invest. Dermatol. 1981, 77, 45.
- 7R. R. Anderson, J. A. Parrish, Optical Properties of Human Skin. In: Regan J.D., Parrish J.A. (eds) The Science of Photomedicine. Photobiology. Springer, Boston 1982, 147. https://doi.org/10.1007/978-1-4684-8312-3_6.
- 8A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, J. Phys. D. Appl. Phys. 2005, 38, 2543.
- 9A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, Opt. Spectrosc. 2005, 99, 836.
- 10A. N. Bashkatov, E. A. Genina, V. V. Tuchin, J. Innov. Opt. Health Sci. 2011, 4, 9.
- 11S. A. Filatova, I. A. Shcherbakov, V. B. Tsvetkov, J. Biomed. Opt. 2017, 22, 35009.
- 12P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, Photochem. Photobiol. Sci. 2003, 2, 124.
- 13H. Soleimanzad, H. Gurden, F. Pain, J. Biomed. Opt. 2017, 22, 010503.
- 14V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII, Proc. of SPIE Vol. 6163, 616310 (SPIE, Bellingham, Washington, USA), 2006, p. 616310. https://doi.org/10.1117/12.697305.
- 15A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, D. A. Boas, Appl. Opt. 2003, 42, 3095.
- 16D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, R. R. Alfano, J. Biomed. Opt. 2017, 22, 45002.
- 17F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, Appl. Opt. 1999, 38, 4939.
- 18L. Shi, L. A. Sordillo, A. Rodriguez-Contreras, R. Alfano, J. Biophotonics 2016, 9, 38.
- 19S. C. Gebhart, W. C. Lin, A. Mahadevan-Jansen, Phys. Med. Biol. 2006, 51, 2011.
- 20A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, Phys. Med. Biol. 2002, 47, 2059.
- 21N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, Nat. Photonics 2013, 7, 205.
- 22S. J. Madsen, Optical Methods and Instrumentation in Brain Imaging and Therapy, Springer, New York 2013.
10.1007/978-1-4614-4978-2 Google Scholar
- 23G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, H. Dai, Nat. Photonics 2014, 8, 723.
- 24Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, T. Jin, RSC Adv. 2014, 4, 41164.
- 25J.-H. Park, W. Sun, M. Cui, PNAS 2015, 112, 9236.
- 26L. Shi, E. J. Galvez, R. R. Alfano, Sci. Rep. 2016, 6, 37714.
- 27G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, G. Han, ACS Nano 2012, 6, 8280.
- 28M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, Nano Lett. 2008, 8, 3834.
- 29N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, R. K. Pandey, Theranostics 2013, 3, 703.
- 30A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710.
- 31L. A. Sordillo, L. Lindwasser, Y. Budansky, P. Leproux, R. R. Alfano, J. Biomed. Opt. 2015, 20, 030501.
- 32L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R. R. Alfano, J. Biomed. Opt. 2014, 19, 056004.
- 33R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, A. J. Durkin, J. Biomed. Opt. 2015, 20, 030901.
- 34E. Hemmer, A. Benayas, F. Légaré, F. Vetrone, Nanoscale Horiz. 2016, 1, 168.
- 35D. Franke, D. K. Harris, O. Chen, O. T. Bruns, J. A. Carr, M. W. B. Wilson, M. G. Bawendi, Nat. Commun. 2016, 7, 12749.
- 36M. Zevon, V. Ganapathy, H. Kantamneni, M. Mingozzi, P. Kim, D. Adler, Y. Sheng, M. C. Tan, M. Pierce, R. E. Riman, C. M. Roth, P. V. Moghe, Small 2015, 11, 6347.
- 37H. Wook Shin, S. Jun Lee, D. Gun Kim, M.-H. Bae, J. Heo, K. Jin Choi, W. Jun Choi, J.-W. Choe, J. Cheol Shin, Sci. Rep. 2015, 5, 10764.
- 38S. Golovynskyi, O. I. Datsenko, L. Seravalli, G. Trevisi, P. Frigeri, I. S. Babichuk, I. Golovynska, J. Qu, Nanoscale Res. Lett. 2018, 13, 103.
- 39S. Golovynskyi, L. Seravalli, O. Datsenko, G. Trevisi, P. Frigeri, E. Gombia, I. Golovynska, S. V. Kondratenko, J. Qu, T. Y. Ohulchanskyy, Nanoscale Res. Lett. 2017, 12, 335.
- 40J. Wu, S. M. Chen, A. Seeds, H. Y. Liu, J. Phys. D. Appl. Phys. 2015, 48, 363001.
- 41P. Wang, H. W. Wang, M. Sturek, J. X. Cheng, J. Biophotonics 2012, 5, 25.
- 42P. Wang, P. Wang, H. W. Wang, J. X. Cheng, J. Biomed. Opt. 2012, 17, 96010.
- 43J. Wang, Y. J. Geng, B. Guo, T. Klima, B. N. Lal, J. T. Willerson, W. Casscells, J. Am. Coll. Cardiol. 2002, 39, 1305.
- 44P. Parsa, S. L. Jacques, N. S. Nishioka, Appl. Opt. 1989, 28, 2325.
- 45A. P. Craig, M. Jain, G. Wicks, T. Golding, K. Hossain, K. McEwan, C. Howle, B. Percy, A. R. J. Marshall, Appl. Phys. Lett. 2015, 106, 201103.
- 46K. M. Yoo, R. R. Alfano, Opt. Lett. 1990, 15, 320.
- 47K. M. Yoo, R. R. Alfano, Opt. Lett. 1990, 15, 276.
- 48K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 1990, 64, 2647.
- 49J. M. Schmitt, G. Kumar, Appl. Opt. 1998, 37, 2788.
- 50M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, P. van der Zee, Adv. Exp. Med. Biol. 1988, 222, 183.
- 51D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, Phys. Med. Biol. 1988, 33, 1433.
- 52H. Heusmann, J. G. Koelzer, G. Mitic, J. Biomed. Opt. 1996, 1, 425.
- 53G. Yona, N. Meitav, I. Kahn, S. Shoham, eNeuro 2016, 3, 0059.
- 54W. F. Cheong, S. A. Prahl, A. J. Welch, IEEE J. Quantum. Electron. 1990, 26, 2166.
- 55S. N. Thennadil, J. Opt. Soc. Amer. A 2008, 25, 1480. https://doi.org/10.1364/josaa.25.001480.
10.1364/JOSAA.25.001480 Google Scholar
- 56C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. T. da Silva, C. M. França, M. R. Hamblin, M. S. Ribeiro, J. Photochem. Photobiol. B Biol. 2016, 160, 72.
- 57A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, R. Cubeddu, J. Biomed. Opt. 2004, 9, 474.
- 58N. Ugryumova, S. J. Matcher, D. P. Attenburrow, Phys. Med. Biol. 2004, 49, 469.
- 59S. Tauber, R. Baumgartner, K. Schorn, W. Beyer, Lasers Surg. Med. 2001, 28, 18.
- 60M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 1993, 38, 503.
- 61J. Workman, L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy, CRC Press, Boca Raton, FL 2008.
- 62T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, P. C. Beard, J. Biomed. Opt. 2012, 17, 061209.
- 63J. D. Caplan, S. Waxman, R. W. Nesto, J. E. Muller, J. Am. Coll. Cardiol. 2006, 47, C92.
- 64F. E. Barton, D. S. Himmelsbach, J. H. Duckworth, M. J. Smith, Appl. Spectrosc. 1992, 46, 420.
- 65R. Marbach, H. M. Heise, Appl. Opt. 1995, 34, 610.
- 66B. G. Osborne, Encyclopedia of Analytical Chemistry. In: Robert A. Meyers (editor) Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (John Wiley & Sons, Chichester). 2006, p. 1. https://doi.org/10.1002/9780470027318.a1018.
- 67B. Clarke, Clin. J. Am. Soc. Nephrol. 2008, 3, S131.
- 68J. Heino, Bioessays 2007, 29, 1001.
- 69S. Ricard-Blum, Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. https://doi.org/10.1101/cshperspect.a004978.
- 70Y. Pu, W. Wang, G. Tang, R. R. Alfano, J. Biomed. Opt. 2010, 15, 047008.
- 71C. Kalaitzidis, S. J. M. Caporn, M. E. J. Cutler, Water Air Soil Pollut. 2008, 194, 57.
- 72H. E. D'Arceuil, M. P. Hotakainen, C. Liu, G. Themelis, A. J. de Crespigny, M. A. Franceschini, J. Biomed. Opt. 2005, 10, 011011.
- 73J. R. Mahoney, R. Holtzer, M. Izzetoglu, V. Zemon, J. Verghese, G. Allali, Brain Res. 2016, 1633, 126.
- 74I. O. Afara, I. Prasadam, R. Crawford, Y. Xiao, A. Oloyede, Bone 2013, 53, 350.
- 75B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, D. D. Sampson, Biomed. Opt. Express 2014, 5, 1217.
- 76Y. J. Zhao, T. T. Yu, C. Zhang, Z. Li, Q. M. Luo, T. H. Xu, D. Zhu, LSA 2018, 7, 17153.
- 77H. McIlwain, H. S. Bachelard, Biochemistry and the Central Nervous System, Churchill Livingstone, Edinburgh, NY 1985.
- 78R. D. Madder, M. Husaini, A. T. Davis, S. VanOosterhout, M. Khan, D. Wohns, R. F. McNamara, K. Wolschleger, J. Gribar, J. S. Collins, M. Jacoby, J. M. Decker, M. Hendricks, S. T. Sum, S. Madden, J. H. Ware, J. E. Muller, Eur. Heart J. Cardiovasc. Imaging 2016, 17, 393. https://doi.org/10.1093/ehjci/jev340.
- 79R. D. Madder, M. Khan, M. Husaini, M. Chi, S. Dionne, S. Van Oosterhout, A. Borgman, J. S. Collins, M. Jacoby, Circ. Cardiovasc. Imaging 2016, 9, e003576. https://doi.org/10.1161/CIRCIMAGING.115.003576.
- 80B. A. Danek, A. Karatasakis, J. Karacsonyi, A. Alame, P. Kalsaria, E. Resendes, B. V. Rangan, S. Banerjee, E. S. Brilakis, Contin. Cardiol. Educ. 2016, 2, 89. https://doi.org/10.1002/cce2.23.
10.1002/cce2.23 Google Scholar
- 81B. A. Danek, A. Karatasakis, J. Karacsonyi, A. Alame, E. Resendes, P. Kalsaria, P. J. Nguyen-Trong, B. V. Rangan, M. Roesle, S. Abdullah, S. Banerjee, E. S. Brilakis, Cardiovasc. Revasc. Med. 2017, 18, 177.