Evaluation of Graphene Nanoplatelets as a Microporous Layer Material for PEMFC: Performance and Durability Analysis
Corresponding Author
M. Mariani
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Correspondence: M. Mariani ([email protected]), Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalySearch for more papers by this authorS. Latorrata
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Search for more papers by this authorP. Gallo Stampino
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Search for more papers by this authorG. Dotelli
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Search for more papers by this authorCorresponding Author
M. Mariani
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Correspondence: M. Mariani ([email protected]), Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalySearch for more papers by this authorS. Latorrata
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Search for more papers by this authorP. Gallo Stampino
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Search for more papers by this authorG. Dotelli
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering ‘‘G. Natta'', Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Search for more papers by this authorAbstract
In this paper, the effect of different carbonaceous phases in microporous layers (MPLs) for polymer electrolyte membrane fuel cells (PEMFCs) is reported. A conventional ink with carbon black (CB) powder and an innovative one featuring graphene nanoplatelets (GNPs) have been produced and used to coat carbon cloth gas diffusion layers (GDLs). Morphological and electrical properties of these samples have been assessed and then compared to determine which characteristics contribute to a possible enhancement of the fuel cell performance. Static contact angle measurements have revealed a similar hydrophobic character for both samples. Through-plane water permeability and porosity of the samples have been correlated to the optimal working temperature: GNPs-based MPLs provide the best performance in dry condition (T = 80 °C, RH = 60%), while CB-based samples work better in more humid conditions. Instead, the electrical conductivity of the samples have not displayed a strong influence on the polarization curve of the cell. In addition, an ex situ mechanical accelerated stress test (AST) has been performed on both samples to assess their durability and understand which factors could lengthen their lifetime. GNPs-based samples resisted better under the harsh conditions imposed during the AST and a possible optimization of this ink composition is proposed for future development.
References
- 1 L. Barreto, A. Makihira, K. Riahi, Int. J. Hydrogen Energ. 2003, 28, 267.
- 2 A. Bauen, D. Hart, J. Power Sources 2000, 86, 482.
- 3 O. Erdinc, M. Uzunoglu, Renew. Sust. Energ. Rev. 2010, 14, 2874.
- 4 O. Z. Sharaf, M. F. Orhan, Renew. Sust. Energ. Rev. 2014, 32, 810.
- 5 F. Barbir, S. Yazici, Int. J. Energ. Res. 2008, 32, 369.
- 6 E. L. Miller, D. Papageorgopoulos, N. Stetson, K. Randolph, D. Peterson, K. Cierpik-Gold, A. Wilson, V. Trejos, J. C. Gumez, N. Rustagi, S. Satyapal, Mrs. Adv. 2016, 1, 2839.
- 7 Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Appl. Energ. 2011, 88, 981.
- 8 J. S. Spendelow, D. C. Papageorgopoulos, Fuel Cells 2011, 11, 775.
- 9 K. Gerardin, S. Rael, C. Bonnet, D. Arora, F. Lapicque, Fuel Cells 2018, 18, 315.
- 10 M. R. Lee, H. Y. Lee, S. D. Yim, C. S. Kim, Y. G. Shul, A. Kucernak, D. Shin, Fuel Cells 2018, 18, 129.
- 11 J. F. Wu, X. Z. Yuan, J. J. Martin, H. J. Wang, J. J. Zhang, J. Shen, S. H. Wu, W. Merida, J. Power Sources 2008, 184, 104.
- 12 W. Schmittinger, A. Vahidi, J. Power Sources 2008, 180, 1.
- 13 N. Yousfi-Steiner, P. Mocoteguy, D. Candusso, D. Hissel, A. Hernandez, A. Aslanides, J. Power Sources 2008, 183, 260.
- 14 R. L. Borup, R. Mukundan, Polymer Electrolyte Fuel Cells 10, Pts. 1 and 2 2010, 33, 17.
- 15 R. Mukundan, A. M. Baker, A. Kusoglu, P. Beattie, S. Knights, A. Z. Weber, R. L. Borup, J. Electrochem. Soc. 2018, 165, F3085.
- 16 S. V. Venkatesan, C. Lim, E. Rogers, S. Holdcroft, E. Kjeang, Phys. Chem. Chem. Phys. 2015, 17, 13872.
- 17 X. Z. Yuan, H. Li, S. S. Zhang, J. Martin, H. J. Wang, J. Power Sources 2011, 196, 9107.
- 18 J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, J. Membrane Sci. 2005, 261, 98.
- 19 E. E. Kimball, J. B. Benziger, Y. G. Kevrekidis, Fuel Cells 2010, 10, 530.
- 20 A. Jayakumar, S. P. Sethu, M. Ramos, J. Robertson, A. Al-Jumaily, Ionics 2015, 21, 1.
- 21 A. Ozturk, B. Ficicilar, I. Eroglu, A. B. Yurtcan, Int. J. Hydrogen Energ. 2017, 42, 21226.
- 22 S. Park, J. W. Lee, B. N. Popov, J. Power Sources 2006, 163, 357.
- 23 P. G. Stampino, C. Cristiani, G. Dotelli, L. Omati, L. Zampori, R. Pelosato, M. Guilizzoni, Catal. Today 2009, 147, S30.
- 24 X. X. Zhang, Y. Gao, H. Ostadi, K. L. Jiang, R. Chen, Int. J. Hydrogen Energ. 2014, 39, 17222.
- 25 H. Liu, M. G. George, R. Banerjee, N. Ge, J. Lee, D. Muirhead, P. Shrestha, S. Chevalier, J. Hinebaugh, R. Zeis, M. Messerschmidt, J. Scholta, A. Bazylak, J. Electrochem. Soc. 2017, 164, F704.
- 26 L. M. Roen, C. H. Paik, T. D. Jarvic, Electrochem. Solid St. 2004, 7, A19.
- 27 S. Latorrata, P. G. Stampino, C. Cristiani, G. Dotelli, Int. J. Hydrogen Energ. 2015, 40, 14596.
- 28 J. H. Chun, D. H. Jo, S. G. Kim, S. H. Park, C. H. Lee, S. H. Kim, Renew. Energ. 2012, 48, 35.
- 29 S. Shahgaldi, A. Ozden, X. Li, F. Hamdullahpur, Electrochimica Acta 2019, 299, 809.
- 30 A. T. Najafabadi, M. J. Leeuwner, D. P. Wilkinson, E. L. Gyenge, ChemSusChem 2016, 9, 1689.
- 31 A. Ozden, S. Shahgaldi, X. G. Li, F. Hamdullahpur, Renew. Energ. 2018, 126, 485.
- 32 A. Ozden, S. Shahgaldi, J. Zhao, X. G. Li, F. Hamdullahpur, Fuel 2018, 215, 726.
- 33 M. Segal, Nat. Nanotechnol. 2009, 4, 611.
- 34 A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902.
- 35 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 36 S. Latorrata, R. Balzarotti, P. G. Stampino, C. Cristiani, G. Dotelli, M. Guilizzoni, Prog. Org. Coat. 2015, 78, 517.
- 37 S. Latorrata, P. G. Stampino, C. Cristiani, G. Dotelli, Int. J. Hydrogen Energ. 2014, 39, 5350.
- 38 P. G. Stampino, L. Omati, C. Cristiani, G. Dotelli, Fuel Cells 2010, 10, 270.
- 39 D. Ebenezer, K. Neelima, M. Jagannatham, P. Haridoss, Fuel Cells 2016, 16, 349.
- 40 J. H. Chun, K. T. Park, D. H. Jo, J. Y. Lee, S. G. Kim, S. H. Park, E. S. Lee, J. Y. Jyoung, S. H. Kim, Int. J. Hydrogen Energ. 2011, 36, 8422.
- 41 X. L. Wang, H. M. Zhang, J. L. Zhang, H. F. Xu, X. B. Zhu, J. Chen, B. L. Yi, J. Power Sources 2006, 162, 474.
- 42 C. J. Tseng, S. K. Lo, Energ. Convers. Manage. 2010, 51, 677.
- 43 C. S. Kong, D. Y. Kim, H. K. Lee, Y. G. Shul, T. H. Lee, J. Power Sources 2002, 108, 185.
- 44 K. Nishida, T. Hosotani, M. Asa, Fuel Cells 2019, 19, 60.
- 45 P. K. Takalloo, E. S. Nia, M. Ghazikhani, Energ. Convers. Manage. 2016, 114, 290.
- 46 F. S. Nanadegani, E. N. Lay, B. Sunden, Int. J. Energ. Res. 2019, 43, 274.