Effects of Compression on the Removal of Water Droplet from GDLs of PEM Fuel Cells
M. H. Shojaeefard
Iran University of Science and Technology, School of Mechanical Engineering, Hangam Ave., 16846-13144 Tehran, Iran
Search for more papers by this authorCorresponding Author
G. R. Molaeimanesh
Iran University of Science and Technology, Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Hangam Ave., 16846-13114 Tehran, Iran
Correspondence: G. R. Molaeimanesh ([email protected]), Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Iran University of Science and Technology, Hangam Ave., Tehran 16846-13114, IranSearch for more papers by this authorM. R. Moqaddari
Iran University of Science and Technology, Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Hangam Ave., 16846-13114 Tehran, Iran
Search for more papers by this authorM. H. Shojaeefard
Iran University of Science and Technology, School of Mechanical Engineering, Hangam Ave., 16846-13144 Tehran, Iran
Search for more papers by this authorCorresponding Author
G. R. Molaeimanesh
Iran University of Science and Technology, Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Hangam Ave., 16846-13114 Tehran, Iran
Correspondence: G. R. Molaeimanesh ([email protected]), Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Iran University of Science and Technology, Hangam Ave., Tehran 16846-13114, IranSearch for more papers by this authorM. R. Moqaddari
Iran University of Science and Technology, Research Laboratory of Automotive Fluids and Structures Analysis, School of Automotive Engineering, Hangam Ave., 16846-13114 Tehran, Iran
Search for more papers by this authorAbstract
Proton-exchange membrane fuel cells (PEMFCs) with a sound potential for employing in the propulsion systems of green vehicles are currently at a high stage of development. However, appropriate water management is crucial for further development of PEMFCs. In the current investigation, the role of gas diffusion layer (GDL) compression and wettability on the removal of a water droplet from different GDLs with dissimilar levels of compression (0%, 15%, 20%, and 25%) and wettability (contact angles of 80°, 105°, and 150°) is inspected by numerous 3D lattice Boltzmann simulations. The results of this study demonstrate that by increasing of compression level, the droplet ejection will be more probable. Besides, for hydrophobic GDLs (i.e., contact angles of 105° and 150°) adding compression will help the removal process, regardless of the compression amount. However, for the hydrophilic GDLs (contact angle of 80°) adding compression is not necessarily helpful.
References
- 1 M. Ehsani, Y. Gao, A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, London, United Kingdom, 2012.
- 2 P. J. Hamilton, B. G. Pollet, Fuel Cells 2010, 10, 489.
- 3 M. Arita, Fuel Cells 2002, 2, 10.
- 4Fuel cell vehicles, can be found under https://en.wikipedia.org/wiki/Fuel_cell, 2016.
- 5 M. Neergat, A. K. Shukla, J. Power Sources 2002, 104, 289.
- 6 A. Jayakumar, S. P. Sethu, M. Ramos, J. Robertson, A. Al-Jumaily, Ionics 2015, 21, 1.
- 7 M. Le Ny, O. Chadebec, G. Cauffet, J. M. Dedulle, Y. Bultel, Fuel Cells 2012, 12, 225.
- 8 P. Y. Yi, L. F. Peng, X. M. Lai, Z. Q. Lin, J. Ni, Fuel Cells 2012, 12, 1019.
- 9
M. M. Mench, Fuel Cell Engines, 1st ed., John Wiley & Sons, New Jersey, USA, 2008.
10.1002/9780470209769 Google Scholar
- 10 I. Nitta, S. Karvonen, O. Himanen, M. Mikkola, Fuel Cells 2008, 8, 410.
- 11 P. Rama, Y. Liu, R. Chen, H. Ostadi, K. Jiang, Y. Gao, X. Zhang, D. Brivio, P. Grassini, Fuel Cells 2011, 11, 274.
- 12 S. Bhlapibul, K. Pruksathorn, Korean J. Chem. Eng. 2008, 25, 1226.
- 13
J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd ed., John Wiley & Sons, Chichester, United Kingdom, 2003.
10.1002/9781118878330 Google Scholar
- 14 M. H. Shojaeefard, G. R. Molaeimanesh, M. Nazemian, M. R. Moqaddari, Int. J. Hydrogen Energy 2016, 41, 20276.
- 15 G. R. Molaeimanesh, H. Saeidi Googarchin, A. Qasemian Moqaddam, Int. J. Hydrogen Energy 2016, 41, 22221.
- 16 K. Tüber, D. Pócza, C. Hebling, J. Power Sources 2003, 124, 403.
- 17 A. Bazylak, D. Sinton, Z. S. Liu, N. Djilali, J. Power Sources 2007, 163, 784.
- 18 P. P. Mukherjee, C.-Y. Wang, V. P. Schulz, Q. Kang, J. Becker, A. Wiegmann, ECS. Trans. 2009, 25, 1485.
- 19 Z. Shi, X. Wang, L. Guessous, J. Fuel Cell. Sci. Technol. 2010, 7, 021012.
- 20 S. G. Kandlikar, M. L. Garofalo, Z. Lu, Fuel Cells 2011, 11, 814.
- 21 Y. Wang, K. S. Chen, J. Electrochem. Soc. 2011, 158, B1292.
- 22 P. Chippar, O. Kyeongmin, K. Kang, H. Ju, Int. J. Hydrogen Energy 2012, 37, 6326.
- 23 M. Mortazavi, K. Tajiri, J. Power Sources 2014, 245, 236.
- 24 D. H. Jeon, H. Kim, J. Power Sources 2015, 294, 393.
- 25 J. Millichamp, T. J. Mason, T. P. Neville, N. Rajalakshmi, R. Jervis, P. R. Shearing, D. J. Brett, J. Power Sources 2015, 284, 305.
- 26 T. Tranter, A. Burns, D. Ingham, M. Pourkashanian, Int. J. Hydrogen Energy 2015, 40, 652.
- 27 A. Mahmoudi, A. Ramiar, Q. Esmaili, Energy. Convers. Manag. 2016, 110, 78.
- 28 W. Chen, F. Jiang, Int. J. Hydrogen Energy 2016, 41, 8550.
- 29 J. H. Nam, M. Kaviany, Int. J. Heat. Mass Transf. 2003, 46, 4595.
- 30 F. Zhang, X. Yang, C. Wang, J. Electrochem. Soc. 2006, 153, A225.
- 31 S. Chen, G. D. Doolen, Annu. Rev. Fluid Mech. 1998, 30, 329.
- 32 G. R. Molaeimanesh, M. H. Akbari, Korean J. Chem. Eng. 2015, 32, 397.
- 33 L. Chen, H.-B. Luan, Y.-L. He, W.-Q. Tao, Int. J. Therm Sci. 2012, 51, 132.
- 34 B. Han, H. Meng, J. Power Sources 2012, 217, 268.
- 35 B. Han, J. Yu, H. Meng, J. Power Sources 2012, 202, 175.
- 36 Y. B. Salah, Y. Tabe, Y. Chikahisa, J. Power Sources 2012, 199, 85.
- 37
Y. B. Salah, Y. Tabe, T. Chikahisa, Energy Procedia
2012, 28, 125.
10.1016/j.egypro.2012.08.046 Google Scholar
- 38 G. R. Molaeimanesh, M. H. Akbari, Int. J. Hydrogen Energy 2014, 39, 8401.
- 39 G. R. Molaeimanesh, M. H. Akbari, Korean J. Chem. Eng. 2014, 31, 598.
- 40 G. R. Molaeimanesh, M. H. Akbari, Int. J. Hydrogen Energy 2016, 41, 14872.
- 41 A. H. Kakaee, G. R. Molaeimanesh, M. H. Elyasi Garmaroud, Int. J. Hydrogen Energy 2016, 43, 15481.
- 42
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 1st ed., Clarendon Press, Oxford, United Kingdom, 2001.
10.1093/oso/9780198503989.001.0001 Google Scholar
- 43 X. Shan, H. Chen, Phys Rev. E 1993, 47, 1815.
- 44 A. K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, Phys Rev. A 1991, 43, 4320.
- 45 M. R. Swift, W. R. Osborn, J. M. Yeomans, Phys Rev. Lett. 1995, 75, 830.
- 46 M. C. Sukop, D. T. Thorne, Lattice Boltzmann Modeling, An Introduction for Geoscientists and Engineers, Springer, Heidelberg, Germany, 2007.
- 47 P. L. Bhatnagar, E. P. Gross, M. Krook, Phys Rev. 1954, 94, 511.
- 48 A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Springer, New York, USA, 2011.
- 49 P. Yuan, L. Schaefer, Phys. Fluids 2006, 18, 042101.
- 50 V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee, C.-Y. Wang, J. Electrochem. Soc. 2007, 154, B419.
- 51 K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, J. Ohser, Comput. Mater. Sci. 2006, 38, 56.
- 52 D. Stoyan, J. Mecke, S. Pohlmann, Stat. J. Theo Appl. Stat. 1980, 11, 281.
- 53 G. R. Molaeimanesh, M. Nazemian, J. Power Sources 2017, 359, 494.
- 54 Q. Zou, X. He, Phys. Fluids 1997, 9, 1591.
- 55 E. Kumbur, K. Sharp, M. Mench, J. Power Sources 2007, 168, 356.