Enhancing anion conduction stability of quaternized poly(phenylene) oxide-based anion exchange membranes with ionic liquids modified carbon nanomaterials
Ning Wang
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorTingting Zuo
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorKe Liu
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorJing Jia
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorDi Song
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorXiaoqing Wei
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorShu Hu
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorCorresponding Author
Quantong Che
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Correspondence
Quantong Che, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Email: [email protected]
Search for more papers by this authorNing Wang
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorTingting Zuo
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorKe Liu
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorJing Jia
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorDi Song
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorXiaoqing Wei
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorShu Hu
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Search for more papers by this authorCorresponding Author
Quantong Che
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
Correspondence
Quantong Che, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Email: [email protected]
Search for more papers by this authorFunding information: Fundamental Research Funds for the Central Universities, Grant/Award Number: N2005001; National Natural Science Foundation of China, Grant/Award Number: 21703029
Summary
The anion exchange membrane (AEM) with high and stable conductivity is important to the commercial application of anion exchange membrane fuel cell. The AEM based on the polymer of quaternized poly(phenylene) oxide (QPPO) with enhanced anion conduction stability has been constructed through the introduction of the ionic liquid (IL) of 1-aminopropyl-3-methylimidazolium bromide (APMIMBr)-modified carbon nanomaterials, such as carbon nanotubes oxide (OCNT) and graphene oxide (GO) nanosheets. The IL-OCNT and IL-GO composites prevented hydroxyl groups from attacking the polymer of QPPO. Thus, QPPO/x(IL-OCNT) and QPPO/x(IL-GO) series membranes possessed enhanced hydroxide conductivity stability in alkaline solution. Specifically, QPPO/5%(IL-OCNT) and QPPO/5%(IL-GO) membranes exhibited the hydroxide conductivities of 23.0 and 28.5 mS/cm at 80°C. Notably, the hydroxide conductivities could reach 16.3 and 30.2 mS/cm while the prepared membranes were immersed in 2 M KOH solution for 1848 h. Furthermore, the stable hydroxide conductivity was derived from the fine dimension stability and mechanical property. The tensile stress values were, respectively, 19.4 and 19.8 MPa even if the membranes were immersed in alkaline solution. In the prepared QPPO/x(IL-OCNT) and QPPO/x(IL-GO) membranes,
Supporting Information
Filename | Description |
---|---|
er8400-sup-0001-supinfo.docxWord 2007 document , 3.3 MB | APPENDIX S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature. 2001; 414(6861): 345-352. doi:10.1038/35104620
- 2Sajid A, Pervaiz E, Ali H, Noor T, Baig MM. A perspective on development of fuel cell materials: electrodes and electrolyte. Int J Energ Res. 2022; 46: 6953-6988. doi:10.1002/er.7635
- 3Liu Q, Wang Z, Yu AJ, et al. A novel anion exchange membrane based on poly (2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC. Int J Hydrogen Energy. 2021; 46(47): 24328-24338. doi:10.1016/j.ijhydene.2021.05.004
- 4Yuan YJ, Du XM, Zhan HY, Wang H, Wang Z. Poly (isatin biphenylene) polymer containing ferrocenium derivatives for anion exchange membrane fuel cell. J Membr Sci. 2022; 642:119986. doi:10.1016/j.memsci.2021.119986
- 5Pan J, Chen C, Zhuang L, Lu JT. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc Chem Res. 2012; 45(3): 473-481. doi:10.1021/ar200201x
- 6Liu D, Xu MZ, Fang ML, Chen JL, Wang L. Branched comb-shaped poly(arylene ether sulfone)s containing flexible alkyl imidazolium side chains as anion exchange membranes. J Mater Chem A. 2018; 6(23): 10879-10890. doi:10.1039/C8TA02115E
- 7Lin BC, Dong HL, Li YY, Si ZH, Gu FL, Yan F. Alkaline stable C2-substituted imidazolium-based anion-exchange membranes. Chem Mater. 2013; 25(9): 1858-1867. doi:10.1021/cm400468u
- 8Zhu L, Yu XD, Peng X, et al. Poly(olefin)-based anion exchange membranes prepared using Ziegler-Natta polymerization. Macromolecules. 2019; 52(11): 4030-4041. doi:10.1021/acs.macromol.8b02756
- 9Zhang BZ, Kaspar RB, Gu S, Wang JH, Zhuang ZB, Yan YS. A new alkali-stable phosphonium cation based on fundamental understanding of degradation mechanisms. ChemSusChem. 2016; 9(17): 2374-2379. doi:10.1002/cssc.201600468
- 10Hossain MA, Jang H, Sutradhar SC, et al. Novel hydroxide conducting sulfonium-based anion exchange membrane for alkaline fuel cell applications. Int J Hydrogen Energy. 2016; 41(24): 10458-10465. doi:10.1016/j.ijhydene.2016.01.051
- 11Xue BX, Wang Q, Zheng JF, Li SH, Zhang SB. Bi-guanidinium-based crosslinked anion exchange membranes: synthesis, characterization, and properties. J Membr Sci. 2020; 601:117923. doi:10.1016/j.memsci.2020.117923
- 12Zheng XY, Song SY, Yang JR, Wang JL, Wang LL. 4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell. Eur Polym J. 2019; 112: 581-590. doi:10.1016/j.eurpolymj.2018.10.020
- 13Zhu TY, Sha Y, Firouzjaie HA, et al. Rational synthesis of metallo-cations toward redox- and alkaline-stable metallo-polyelectrolytes. J Am Chem Soc. 2020; 142(2): 1083-1089. doi:10.1021/jacs.9b12051
- 14Lin BC, Xu F, Su Y, et al. Ether-free polybenzimidazole bearing pendant imidazolium groups for alkaline anion exchange membrane fuel cells application. ACS Appl Energ Mater. 2020; 3(1): 1089-1098. doi:10.1021/acsaem.9b02123
- 15Ye NY, Zhang DJ, Yang YF, et al. 3-Glycidoxy-propylthrimethoxysilane improved anion exchange membranes based on quaternized poly(2,6-dimethyl-1,4-phenyleneoxide). Polymer. 2019; 17: 38-44.
- 16Cheng X, Wang JC, Liao YC, Li CP, Wei ZD. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal. ACS Appl Mater Inter. 2018; 10(28): 23774-23782. doi:10.1021/acsami.8b05298
- 17Wang C, Mo BM, He ZF, et al. Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J Membr Sci. 2018; 556: 118-125. doi:10.1016/j.memsci.2018.03.080
- 18Zhang JJ, Zhang KY, Liang X, et al. Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells. J Mater Chem A. 2021; 9(1): 327-337. doi:10.1039/D0TA11011F
- 19Li Y, Zhang JJ, Yang H, et al. Boosting the performance of an anion exchange membrane by the formation of well-connected ion conducting channels. Polym Chem. 2019; 10(22): 2822-2831. doi:10.1039/C9PY00011A
- 20Zheng JF, Zhang QF, Qian HD, Xue BX, Li SH, Zhang SB. Self-assembly prepared anion exchange membranes with high alkaline stability and organic solvent resistance. J Membr Sci. 2017; 522: 159-167. doi:10.1016/j.memsci.2016.09.021
- 21Yuan YF, Hu B, Tong CY, Bai Y, Lu CL. Novel quaternized carbon dots modified polysulfone-based anion exchange membranes with improved performance. Int J Hydrogen Energy. 2019; 44(39): 22181-22193. doi:10.1016/j.ijhydene.2019.06.173
- 22Qiu M, Zhang B, Wu H, et al. Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes. J Membr Sci. 2019; 573: 1-10. doi:10.1016/j.memsci.2018.11.070
- 23Liu XD, Chen XH, Hu Y, Gong TL, Li H, Zhang YM. Ionic-liquid-functionalized graphene nanoribbons for anion exchange membrane fuel cells. J Electrochem Soc. 2017; 164(4): F433-F440. doi:10.1149/2.0141706jes
- 24Liu LD, Tong CY, He Y, Zhao YX, Lü CL. Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell. J Membr Sci. 2015; 487: 99-108. doi:10.1016/j.memsci.2015.03.077
- 25Cseri L, Baugh J, Alabi A, et al. Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis. J Mater Chem A. 2018; 6(48): 24728-24739. doi:10.1039/C8TA09160A
- 26Liu YX, Dai J, Zhang KB, et al. Hybrid anion exchange membrane of hydroxylm-odified polysulfone incorporating guanidinium-functionalized graphene oxide. Ionics. 2017; 23(11): 3085-3096. doi:10.1007/s11581-017-2100-3
- 27Yang Q, Lin CX, Liu FH, et al. Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells. J Membr Sci. 2018; 552: 367-376. doi:10.1016/j.memsci.2018.02.036
- 28Movil O, Frank L, Staser JA. Graphene oxide-polymer nanocomposite anion-exchange membranes. J Electrochem Soc. 2015; 162(4): F419-F426. doi:10.1149/2.0681504jes
- 29Hu B, Miao LY, Zhao YX, Lü CL. Azide-assisted crosslinked quaternized polysulfone with reduced graphene oxide for highly stable anion exchange membranes. J Membr Sci. 2017; 530: 84-94. doi:10.1016/j.memsci.2017.02.023
- 30Zhao Y, Tang KN, Ruan HM, et al. Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane. J Membr Sci. 2017; 536: 167-175. doi:10.1016/j.memsci.2017.05.002
- 31Che QT, He RH, Yang JS, Feng L, Savinell RF. Phosphoric acid doped high temperature proton exchange membranes based on sulfonated polyetheretherketone incorporated with ionic liquids. Electrochem Commun. 2010; 12(5): 647-649. doi:10.1016/j.elecom.2010.02.021
- 32Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010; 4(8): 4806-4814. doi:10.1021/nn1006368
- 33Zhao Y, Zhu JJ, Li J, et al. Robust multilayer grapheme-organic frameworks for selective separation of monovalent anions. ACS Appl Mater Inter. 2018; 10(21): 18426-18433. doi:10.1021/acsami.8b03839
- 34Katzfuss A, Gogel V, Joerissen L, Kerres J. The application of covalently cross-linked BrPPO as AEM in alkaline DMFC. J Membr Sci. 2013; 425-426: 131-140. doi:10.1016/j.memsci.2012.09.022
- 35Msomi PF, Nonjola P, Ndungu PG, Ramonjta J. Quaternized poly(2.6 dimethyl-1.4 phenylene oxide)/polysulfone blend composite membrane doped with ZnO-nanoparticles for alkaline fuel cells. J Appl Polym Sci. 2018; 135(10):45959. doi:10.1002/app.45959
- 36Li CR, Wang GH, Yu DB, et al. Cross-linked anion exchange membranes with hydrophobic side-chains for anion separation. J Membr Sci. 2019; 581: 150-157. doi:10.1016/j.memsci.2019.03.059
- 37Zhang DJ, Ye NY, Chen SS, Wan RY, Yang YF, He RH. Enhancing properties of poly(2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with 5-mercaptotetrazole modified graphene oxides. Renew Energ. 2020; 160: 250-260. doi:10.1016/j.renene.2020.06.052
- 38Bai Y, Yuan YF, Yang Y, Lü CL. A facile fabrication of functionalized rGO crosslinked chemically stable polysulfone-based anion exchange membranes with enhanced performance. Int J Hydrogen Energy. 2019; 44(13): 6618-6630. doi:10.1016/j.ijhydene.2019.01.143
- 39Wilhelm TS, Kecskes IL, Baboli MA, et al. Ordered Si micropillar arrays via carbon-nanotube-assisted chemical etching for applications requiring nonreflective embedded contacts. ACS Appl Energ Mater. 2019; 2(12): 7819-7826.
- 40Xie KP, Xia W, Masa J, et al. Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. J Energ Chem. 2016; 25(2): 282-288. doi:10.1016/j.jechem.2016.01.023
- 41Shukla G. Shahi VK amine functionalized graphene oxide containing C16 chain grafted with poly(ether sulfone) by DABCO coupling: anion exchange membrane for vanadium redox flow battery. J Membr Sci. 2019; 575: 109-117. doi:10.1016/j.memsci.2019.01.008
- 42Han JJ, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes. Macromolecules. 2017; 50(8): 3323-3332. doi:10.1021/acs.macromol.6b01140
- 43Luo JJ, Liu CJ, Song YH, Cui PP, Zhang Y. QPPO/palygorskite nanocomposite as an anion exchange membrane for alkaline fuel cell. Int J Polym Mater Po. 2015; 64(16): 831-837.
- 44Xu YX, Ye NY, Zhang DJ, Yang YF, Yang JS, He RH. Imidazolium functionalized poly(aryl ether ketone) anion exchange membranes having star main chains or side chains. Renew Energ. 2018; 127: 910-919. doi:10.1016/j.renene.2018.04.077
- 45Li NW, Leng YJ, Hickner MA, Wang CY. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. J Am Chem Soc. 2013; 135(27): 10124-10133. doi:10.1021/ja403671u
- 46Xu YX, Ye NY, Zhang DJ, Yang JS, He RH. Ionic crosslinking of imidazolium functionalized poly(aryl ether ketone) by sulfonated poly(ether ether ketone) for anion exchange membranes. J Colloid Interf Sci. 2017; 497: 333-342. doi:10.1016/j.jcis.2017.03.033
- 47Mao XL, Li Z, He GW, et al. Enhancing hydroxide conductivity of anion exchange membrane via incorporating densely imidazolium functionalized graphene oxide. Solid State Ion. 2019; 333: 83-92. doi:10.1016/j.ssi.2019.01.023
- 48Ha Lee K, Chu JY, Kim AR, Yoo DJ. Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells. ACS Sustainable Chem Eng. 2021; 9(26): 8824-8834. doi:10.1021/acssuschemeng.1c01978
- 49Varcoe JR, Atanassov P, Dekel DR, et al. Anion-exchange membranes in electrochemical energy systems. Energ Environ Sci. 2014; 7(10): 3135-3191. doi:10.1039/C4EE01303D
- 50Qaisrani NA, Ma LL, Hussain M, et al. Hydrophilic flexible ether containing, cross-linked anion exchange membrane quaternized with DABCO. ACS Appl Mater Inter. 2020; 12(3): 3510-3521. doi:10.1021/acsami.9b15435
- 51Vijayakumar V, Son T, Kim H, Nam S. A facile approach to fabricate poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications. J Membr Sci. 2019; 591:117314. doi:10.1016/j.memsci.2019.117314
- 52Gao Q, Pan XT, Buregeya PI, et al. Stable anion exchange membranes derived from fluorinated poly(aryl ethers) with quaternized fluorene units for fuel cell applications. J Appl Polym Sci. 2018; 135(21): 46301. doi:10.1002/app.46301
- 53Xu S, Zhang G, Zhang Y, et al. Cross-linked hydroxide conductive membranes with side chains for direct methanol fuel cell applications. J Mater Chem. 2012; 22(26): 13295-13302. doi:10.1039/c2jm16593g
- 54Lai A, Wang LS, Lin CX, et al. Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells. J Membr Sci. 2015; 481: 9-18. doi:10.1016/j.memsci.2015.02.013
- 55Yang JM, Chiu HC. Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J Membr Sci. 2012; 419-420: 65-71. doi:10.1016/j.memsci.2012.06.051
- 56Xu PY, Zhou K, Han GL, Zhang QG, Zhu AM, Liu QL. Effect of fluorene groups on the properties of multiblock poly(arylene ether sulfone)s-based anion-exchange membranes. ACS Appl Mater Inter. 2014; 6(9): 6776-6785. doi:10.1021/am5017599
- 57Sung S, Mayadevi TS, Min K, Lee J, Chae JE, Kim TH. Crosslinked PPO-based anion exchange membranes: the effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length. J Membr Sci. 2021; 619:118774. doi:10.1016/j.memsci.2020.118774
- 58Zhang DJ, Xu SC, Wan RY, Yang YF, He RH. Functionalized graphene oxide cross-linked poly (2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity. J Power Sources. 2022; 517:230720. doi:10.1016/j.jpowsour.2021.230720
- 59Li ZM, Li CH, Long C, et al. Elastic and durable multi-cation-crosslinked anion exchange membrane based on poly(styrene-b-[ethylene-co-butylene]-b-styrene). J Polym Sci. 2020; 58(16): 2181-2196. doi:10.1002/pol.20200290
- 60Zhang Y, Chen WT, Yan XM, et al. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes. J Membr Sci. 2020; 598:117650. doi:10.1016/j.memsci.2019.117650