Volume 46, Issue 12 pp. 16576-16592
RESEARCH ARTICLE

Redox flow battery time-varying parameter estimation based on high-order sliding mode differentiators

Pedro Fornaro

Corresponding Author

Pedro Fornaro

Departamento de Electrotécnia, Instituto LEICI, Universidad Nacional de la Plata – CONICET, Buenos Aires, Argentina

Correspondence

Pedro Fornaro, Instituto LEICI, Universidad Nacional de la, Plata - CONICET, Departamento de Electrotécnia, 48 y 116 s/n, La Plata (1900), Buenos Aires, Argentina.

Email: [email protected]

Search for more papers by this author
Thomas Puleston

Thomas Puleston

Institut de Robótica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain

Search for more papers by this author
Paul Puleston

Paul Puleston

Departamento de Electrotécnia, Instituto LEICI, Universidad Nacional de la Plata – CONICET, Buenos Aires, Argentina

Search for more papers by this author
Maria Serra-Prat

Maria Serra-Prat

Institut de Robótica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain

Search for more papers by this author
Ramon Costa-Castelló

Ramon Costa-Castelló

Institut de Robótica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain

Search for more papers by this author
Pedro Battaiotto

Pedro Battaiotto

Departamento de Electrotécnia, Instituto LEICI, Universidad Nacional de la Plata – CONICET, Buenos Aires, Argentina

Search for more papers by this author
First published: 05 July 2022
Citations: 18

Funding information: “la Caixa” Foundation, Grant/Award Number: LCF/BQ/DI21/11860023; Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación; Consejo Nacional de Investigaciones Científicas y Técnicas; Universitat Politècnica de Catalunya; Ministerio de Ciencia e Innovación; Consejo Superior de Investigaciones Científicas; Universidad Nacional de La Plata

Summary

A new insight into vanadium redox flow batteries (VRFB) parameter estimation is presented. Driven by the electric vehicles proliferation, a hybrid fast-charging station with grid and a renewable energy connection is particularly considered. In this stationary application, the VRFB is operating as buffering module. This hybrid topology could contribute to reduce the grid connection cost of the charging station. However, to make VRFB a viable technology, improvements are needed. Among these, some of the most important are in the field of the estimation of the battery's State of Charge, State of Health, and internal parameters. The proposed estimation method is based on a recursive least square (RLS) estimation algorithm with forgetting factor, combined with a sliding mode finite-time convergent differentiation algorithm. The latter provides robust exact derivatives of both VRFB's current and voltage with a high degree of noise rejection, required by the RLS algorithm to perform a precise estimation. The proposed sliding mode-based estimation setup is completed with a systematic methodology to guarantee the validity of the on-line estimated values, depending on the persistence of excitation of the measured current and voltage. Finally, the methodology is thoroughly analysed and validated by computer simulation.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.