Potential pathways for syngas transformation towards kerosene range hydrocarbons in a dual Fischer-Tropsch-zeolite bed
Corresponding Author
Daniel Martínez del Monte
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Correspondence
Daniel Martínez del Monte, Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, 28933 Móstoles, Spain.
Email: [email protected]
Search for more papers by this authorArturo J. Vizcaíno
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Search for more papers by this authorJavier Dufour
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Systems Analysis Unit, IMDEA Energy, Móstoles, Spain
Search for more papers by this authorCarmen Martos
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Search for more papers by this authorCorresponding Author
Daniel Martínez del Monte
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Correspondence
Daniel Martínez del Monte, Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, 28933 Móstoles, Spain.
Email: [email protected]
Search for more papers by this authorArturo J. Vizcaíno
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Search for more papers by this authorJavier Dufour
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Systems Analysis Unit, IMDEA Energy, Móstoles, Spain
Search for more papers by this authorCarmen Martos
Chemical, Energy and Mechanical Technology Department, Rey Juan Carlos University, Móstoles, Spain
Search for more papers by this authorFunding information: Consejería de Educación. Dirección General de Universidades e Investigación. Comunidad Autónoma de Madrid, Grant/Award Number: S2013/MAE-2882; Spanish Goverment, Grant/Award Number: CTQ2013-44447-R
Summary
The Fischer-Tropsch synthesis is considered to be an alternative process to produce liquid hydrocarbons in an environmentally sustainable way by using synthesis gas obtained from renewable resources. The combination of acid catalysts, such as zeolites, with Fischer-Tropsch catalysts could lead to an increase in the selectivity to an specific range of hydrocarbons, such as synthetic paraffinic kerosene. Therefore, the conversion of synthesis gas in hydrocarbons within kerosene range using catalytic dual beds formed by a potassium-cobalt-promoted iron and zeolites H-ZSM-5 and H-ZSM-12 has been studied. The reactions have been carried out at 250°C, 20 bar in a stacked fixed dual bed using synthesis gas with a H2:CO molar ratio of 2 during 60 hours. The selectivity towards C9-C16 hydrocarbons was increased from 25% using the FT catalyst without zeolite, and up to 30% by using zeolites H-ZSM-5 or H-ZSM-12 with a Si/Al of 30 and 60, respectively. The results allowed the development of a reaction scheme suitable to design a tunable process for the synthesis gas conversion.
Supporting Information
Filename | Description |
---|---|
er7460-sup-0001-Supinfo.docxWord 2007 document , 1.2 MB | Data S1 Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 U.S. Energy Information Administration, International Energy Outlook 2016. Paris; 2016. http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf.
- 2 ExxonMobil, Outlook For Energy: A Prespective to 2040; 2019.
- 3Calles JA, Carrero A, Vizcaíno AJ, García-Moreno L, Megía PJ. Steam reforming of model bio-oil aqueous fraction using Ni-(Cu, Co, Cr)/SBA-15 catalysts. Int J Mol Sci. 2019; 20(3): 512. doi:10.3390/ijms20030512
- 4Cortese M, Ruocco C, Palma V, Megía PJ, Carrero A, Calles JA. On the support effect and the cr promotion of co based catalysts for the acetic acid steam reforming. Catalysts. 2021; 11: 1-16. doi:10.3390/catal11010133
- 5Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energ Conver Manage. 2007; 48: 1132-1139. doi:10.1016/j.enconman.2006.10.014
- 6dos Santos RG, Alencar AC. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int J Hydrogen Energy. 2020; 45: 18114-18132. doi:10.1016/j.ijhydene.2019.07.133
- 7Marchese M, Chesta S, Santarelli M, Lanzini A. Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification. Energy. 2021; 228:120581. doi:10.1016/j.energy.2021.120581
- 8Kreutz TG, Larson ED, Elsido C, Martelli E, Greig C, Williams RH. Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR. Appl Energy. 2020; 279:115841. doi:10.1016/j.apenergy.2020.115841
- 9Uner DO. A sensible mechanism of alkali promotion in Fischer-Tropsch synthesis: adsorbate mobilities. Ind Eng Chem Res. 1998; 37: 2239-2245. doi:10.1021/ie970696d
- 10Shi B, Liao Y, Callihan ZJ, Shoopman BT, Luo M. Carbon-carbon bond formation during Fe catalyzed Fischer-Tropsch synthesis. Appl Catal Gen. 2020; 602:117607. doi:10.1016/j.apcata.2020.117607
- 11Méndez CI, Ancheyta J. Kinetic models for Fischer-Tropsch synthesis for the production of clean fuels. Catal Today. 2020; 353: 3-16. doi:10.1016/j.cattod.2020.02.012
- 12Friedel RA, Anderson RB. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst. J Am Chem Soc. 1950; 72: 1212-1215.
- 13Wolke F, Hu Y, Schmidt M, et al. Spatially-resolved reaction profiles in Fischer-Tropsch synthesis – influence of operating conditions and promotion for iron-based catalysts. Catal Commun. 2021; 158:106335. doi:10.1016/j.catcom.2021.106335
- 14Toncón-Leal CF, Múnera JF, Arroyo-Gómez JJ, Sapag K. Fe, Co and Fe/Co catalysts supported on SBA-15 for Fischer-Tropsch Synthesis. Catalysis Today, 2021. doi:10.1016/j.cattod.2021.07.023
- 15De Klerk A. Aviation turbine fuels through the Fischer-Tropsch process. Biofuels Aviat. United States: Elsevier Inc.; 2016: 241-260. doi:10.1016/B978-0-12-804568-8.00010-X
10.1016/B978-0-12-804568-8.00010-X Google Scholar
- 16Cheng K, Kang J, King DL, et al. Advances in Catalysis for Syngas Conversion to Hydrocarbons. In Advances in Catalysis. 1st ed. United States: Elsevier Inc.; 2017. doi:10.1016/bs.acat.2017.09.003
- 17Li X, Chen Y, Liu S, et al. Enhanced gasoline selectivity through Fischer-Tropsch synthesis on a bifunctional catalyst: effects of active sites proximity and reaction temperature. Chem Eng J. 2021; 416:129180. doi:10.1016/j.cej.2021.129180
- 18Zecevic J, Vanbutsele G, De Jong KP, Martens JA. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature. 2015; 528: 245-254. doi:10.1038/nature16173
- 19Duyckaerts N, Bartsch M, Trotuş IT, et al. Intermediate product regulation in tandem solid catalysts with multimodal porosity for high-yield synthetic fuel production. Angew Chem Int Ed. 2017; 56: 11480-11484. doi:10.1002/anie.201705714
- 20Liu ZW, Li X, Asami K, Fujimoto K. Selective production of iso-paraffins from syngas over Co/SiO2 and Pd/beta hybrid catalysts. Catal Commun. 2005; 6: 503-506. doi:10.1016/j.catcom.2005.04.013
- 21Liu ZW, Li X, Asami K, Fujimoto K. High performance Pd/beta catalyst for the production of gasoline-range iso-paraffins via a modified Fischer-Tropsch reaction. Appl Catal Gen. 2006; 300: 162-169. doi:10.1016/j.apcata.2005.11.002
- 22Vedachalam S, Boahene P, Dalai AK. Production of jet fuel by hydrorefining of Fischer-Tropsch wax over Pt/Al-TUD-1 bifunctional catalyst. Fuel. 2021; 300:121008. doi:10.1016/j.fuel.2021.121008
- 23Sabino L, Luis V. Zeolites as potential structures in obtaining jet fuel through the Fischer-Tropsch synthesis. In Zeolites - Useful Minerals. United Kingdom: IntechOpen; 2016; 167-186.
- 24Bessell S. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts. Appl Catal Gen. 1995; 126: 235-244. doi:10.1016/0926-860X(95)00040-2
- 25Ngamcharussrivichai C, Liu X, Li X, Vitidsant T, Fujimoto K. An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts. Fuel. 2007; 86: 50-59. doi:10.1016/j.fuel.2006.06.021
- 26Kibby C, Jothimurugesan K, Das T, Lacheen HS, Rea T, Saxton RJ. Chevron's gas conversion catalysis-hybrid catalysts for wax-free Fischer-Tropsch synthesis. Catal Today. 2013; 215: 131-141. doi:10.1016/j.cattod.2013.03.009
- 27Weber JL, Krans NA, Hofmann JP, et al. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal Today. 2019; 342: 161-166. doi:10.1016/J.CATTOD.2019.02.002
- 28Weber JL, Dugulan I, De Jongh PE, De Jong KP. Bifunctional catalysis for the conversion of synthesis gas to olefins and aromatics. ChemCatChem. 2018; 10: 1107-1112. doi:10.1002/cctc.201701667
- 29Weber JL, Martínez del Monte D, Beerthuis R, et al. Conversion of synthesis gas to aromatics at medium temperature with a Fischer Tropsch and ZSM-5 dual catalyst bed. Catal Today. 2020; 369: 175-183. doi:10.1016/j.cattod.2020.05.016
- 30Martínez del Monte D, Vizcaíno AJ, Dufour J, Martos C. Effect of K, Co and Mo addition in Fe-based catalysts for aviation biofuels production by Fischer-Tropsch synthesis. Fuel Process Technol. 2019; 194:106102. doi:10.1016/j.fuproc.2019.05.025
- 31Chu S, Yang L, Guo X, et al. The influence of pore structure and Si/Al ratio of HZSM-5 zeolites on the product distributions of Α-cellulose hydrolysis. Mol Catal. 2018; 445: 240-247. doi:10.1016/j.mcat.2017.11.032
- 32Daldoul I, Auger S, Picard P, Nohair B, Kaliaguine S. Effect of temperature Ramp on hydrocarbon desorption profiles from zeolite ZSM-12. Can J Chem Eng. 2016; 94: 931-937. doi:10.1002/cjce.22467
- 33Pine LA, Maher PJ, Wachter WA. Prediction of cracking catalyst behavior by a zeolite unit cell size model. J Catal. 1984; 85: 466-476. doi:10.1016/0021-9517(84)90235-5
- 34Shirazi L, Jamshidi E, Ghasemi MR. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst Res Technol. 2008; 43: 1300-1306. doi:10.1002/crat.200800149
- 35Souza MJB, Silva AOS, Garrido AM, Araujo AS. Catalytic properties of HZSM-12 zeolite in n-heptane catalytic cracking. React Kinet Catal Lett. 2005; 84: 287-293.
- 36Karre AV, Kababji A, Kugler EL, Dadyburjor DB. Effect of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer-Tropsch synthesis in separate beds and mixed beds. Catal Today. 2012; 198: 280-288. doi:10.1016/j.cattod.2012.04.068
- 37Weber JL, Krans NA, Hofmann JP, et al. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal Today. 2019; 342: 161-166. doi:10.1016/j.cattod.2019.02.002
- 38De Smit E, Weckhuysen BM. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem Soc Rev. 2008; 37: 2758-2781. doi:10.1039/b805427d
- 39Olah GA, Molnár A. Hydrocarbon Chemistry. United States: Wiley; 1995.
- 40Egloff G, Morrell JC, Thomas CL, Bloch HS. The catalytic cracking of aliphatic hydrocarbons. J Am Chem Soc. 1939; 61: 3571-3580. doi:10.1021/ja01267a104
- 41Moon S, Chae HJ, Park MB. Oligomerization of light olefins over ZSM-5 and beta zeolite catalysts by modifying textural properties. Appl Catal Gen. 2018; 553: 15-23. doi:10.1016/j.apcata.2018.01.015
- 42Dugkhuntod P, Imyen T, Wannapakdee W, Yutthalekha T, Salakhum S, Wattanakit C. Synthesis of hierarchical ZSM-12 nanolayers for levulinic acid esteri fi cation with ethanol to ethyl. 2019; 18087-18097. doi:10.1039/c9ra03213d
10.1039/c9ra03213d Google Scholar
- 43Trakarnroek S, Jongpatiwut S, Rirksomboon T, Osuwan S, Resasco DE. n-Octane aromatization over Pt/KL of varying morphology and channel lengths. Appl Catal Gen. 2006; 313: 189-199. doi:10.1016/j.apcata.2006.07.020
- 44Martínez del Monte D. Diseño de catalizadores para la producción de queroseno de aviación mediante la síntesis de Fischer-Tropsch. Spain: Universidad Rey Juan Carlos; 2020.
- 45Xu Y, Liu D, Liu X. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Appl Catal Gen. 2018; 552: 168-183. doi:10.1016/j.apcata.2018.01.012
- 46Yang T, Cheng L, Li N, Liu D. Effect of metal active sites on the product distribution over composite catalysts in the direct synthesis of aromatics from syngas. Ind Eng Chem Res. 2017; 56: 11763-11772. doi:10.1021/acs.iecr.7b03450