Study of annual performance and capacity of data center passive cooling mode
Ahmad Alamir Sbaity
Normandie Université, LUSAC-Unicaen, Site Universitaire Bellevue, Saint-Lô, France
Search for more papers by this authorCorresponding Author
Hasna Louahlia
Normandie Université, LUSAC-Unicaen, Site Universitaire Bellevue, Saint-Lô, France
Correspondence
Hasna Louahlia, Normandie Université, LUSAC-Unicaen, Site Universitaire Bellevue, 120 rue de l'exode-50000 Saint-Lô, France.
Email: [email protected]
Search for more papers by this authorAhmad Alamir Sbaity
Normandie Université, LUSAC-Unicaen, Site Universitaire Bellevue, Saint-Lô, France
Search for more papers by this authorCorresponding Author
Hasna Louahlia
Normandie Université, LUSAC-Unicaen, Site Universitaire Bellevue, Saint-Lô, France
Correspondence
Hasna Louahlia, Normandie Université, LUSAC-Unicaen, Site Universitaire Bellevue, 120 rue de l'exode-50000 Saint-Lô, France.
Email: [email protected]
Search for more papers by this authorSummary
This article studies a new architecture of a thermosyphon loop and its capacity to cool data center considering the climate of several cities in France. A parametric experimental study is carried out to show the effect of the refrigerant fill ratio, the input heat load, and the outside temperature. The optimal fill ratio is 16% and the maximum cooling capacity is 1900 W when the data center outside temperature is 20°C. A hydraulic and thermal analytical model is developed to simulate the thermosyphon loop, and it is validated with the experimental results. The cooling load of a typical data center with ten racks, each one dissipates 4.5 kW, is simulated by TRNSYS software for the eight chosen cities in France. The annual performance shows that the percentage of undissipated heat is 13.4% in Marseille that has the highest annual average outside temperature and 2.7% in Caen that has the lowest summer average outside temperature of the data center. The particularity of this work is that it gives the annual performance of a new architecture of a thermosyphon loop in several cities of France with different climates and without electricity consumption.
REFERENCES
- 1Habibi Khalaj A, Halgamuge S. A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system. Appl Energy. 2017; 205: 1165-1188. doi:10.1016/j.apenergy.2017.08.037
- 2Luo Y, Andresen J, Clarke H, Rajendra M, Maroto-Valer M. A framework for waste heat energy recovery within data Centre. Energy Procedia. 2019; 158: 3788-3794. doi:10.1016/j.egypro.2019.01.875
10.1016/j.egypro.2019.01.875 Google Scholar
- 3Sun Y, Wang T, Yang L, Hu L, Zeng X. Research of an integrated cooling system consisted of compression refrigeration and pump-driven heat pipe for data centers. Energy Build. 2019; 187: 16-23. doi:10.1016/j.enbuild.2019.01.050
- 4He Z, Ding T, Liu Y, Li Z. Analysis of a district heating system using waste heat in a distributed cooling data center. Appl Therm Eng. 2018; 141: 1131-1140. doi:10.1016/j.applthermaleng.2018.06.036
10.1016/j.applthermaleng.2018.06.036 Google Scholar
- 5Ebrahimi K, Jones G, Fleischer A. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable Sustainable Energy Rev. 2014; 31: 622-638. doi:10.1016/j.rser.2013.12.007
- 6Wahlroos M, Pärssinen M, Rinne S, Syri S, Manner J. Future views on waste heat utilization–case of data centers in northern Europe. Renewable Sustainable Energy Rev. 2018; 82: 1749-1764. doi:10.1016/j.rser.2017.10.058
- 7 ASHRAE, Thermal guidelines for data processing environments–expanded data center classes and usage guidance, ed. Technical Committee (TC) September 9, 2011.
- 8Deymi-Dashtebayaz M, Namanlo S. Potentiometric and economic analysis of using air and water-side economizers for data center cooling based on various weather conditions. Int J Refrig. 2019; 99: 213-225. doi:10.1016/j.ijrefrig.2019.01.011
- 9Rong H, Zhang H, Xiao S, Li C, Hu C. Optimizing energy consumption for data centers. Renewable Sustainable Energy Rev. 2016; 58: 674-691. doi:10.1016/j.rser.2015.12.283
- 10Qian X, Li Z, Li Z. A thermal environmental analysis method for data centers. Int J Heat Mass Transfer. 2013; 62: 579-585. doi:10.1016/j.ijheatmasstransfer.2013.03.037
10.1016/j.ijheatmasstransfer.2013.03.037 Google Scholar
- 11Robert F. Alternating Cold and Hot Aisles Provides More Reliable Cooling for Server Farms; 2000; White Paper, Uptime Institute.
- 12Oró E, Garcia A, Salom J. Experimental and numerical analysis of the air management in a data Centre in Spain. Energy Build. 2016; 116: 553-561. doi:10.1016/j.enbuild.2016.01.037
10.1016/j.enbuild.2016.01.037 Google Scholar
- 13Lu H, Zhang Z, Yang L. A review on airflow distribution and management in data center. Energy Build. 2018; 179: 264-277. doi:10.1016/j.enbuild.2018.08.050
- 14Chu W, Wang R, Hsu P, Wang C. Assessment on rack intake flowrate uniformity of data center with cold aisle containment configuration. J Build Eng. 2020; 30:101331. doi:10.1016/j.jobe.2020.101331
10.1016/j.jobe.2020.101331 Google Scholar
- 15Herrlin MK. Improved data center energy efficiency and thermal performance by advanced airflow analysis. Paper presented at: Proceedings of Digital Power Forum; 2007.10-12.
- 16Sharma R, Bash C, Patel C. Dimensionless parameters for evaluation of thermal design and performance of large-scale data centers. Paper presented at: 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; 2002.
- 17Zhang H, Shao S, Xu H, Zou H, Tian C. Free cooling of data centers: a review. Renewable Sustainable Energy Rev. 2014; 35: 171-182. doi:10.1016/j.rser.2014.04.017
- 18Zhang L, Liu Y, Liu X, Meng X, Guo X, Zhang L. Experimental investigation of gravity heat pipe exchanger applied in communication base station. Procedia Eng. 2015; 121: 1326-1333. doi:10.1016/j.proeng.2015.09.014
10.1016/j.proeng.2015.09.014 Google Scholar
- 19Sundaram A, Seeniraj R, Velraj R. An experimental investigation on passive cooling system comprising phase change material and two-phase closed thermosyphon for telecom shelters in tropical and desert regions. Energy Build. 2010; 42(10): 1726-1735. doi:10.1016/j.enbuild.2010.05.008
- 20Sun X, Zhang Q, Medina M, Liu Y, Liao S. A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China. Appl Energy. 2014; 117: 95-103. doi:10.1016/j.apenergy.2013.12.010
10.1016/j.apenergy.2013.12.010 Google Scholar
- 21Zhang H, Shi Z, Liu K, Shao S, Jin T, Tian C. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers. Appl Therm Eng. 2017; 111: 1083-1090. doi:10.1016/j.applthermaleng.2016.10.029
- 22Ling L, Zhang Q, Yu Y, Wu Y, Liao S. Study on thermal performance of micro-channel separate heat pipe for telecommunication stations: experiment and simulation. Int J Refrig. 2015; 59: 198-209. doi:10.1016/j.ijrefrig.2015.08.006
10.1016/j.ijrefrig.2015.08.006 Google Scholar
- 23Franco A, Filippeschi S. Experimental analysis of closed loop two phase thermosyphon (CLTPT) for energy systems. Exp Therm Fluid Sci. 2013; 51: 302-311. doi:10.1016/j.expthermflusci.2013.08.013
- 24Tong Z, Ding T, Li Z, Liu X. An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center. Appl Therm Eng. 2015; 90: 362-365. doi:10.1016/j.applthermaleng.2015.07.019
- 25Zhang H, Shao S, Xu H, Zou H, Tang M, Tian C. Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon. Appl Energy. 2017; 185: 1604-1612. doi:10.1016/j.apenergy.2016.01.053
10.1016/j.apenergy.2016.01.053 Google Scholar
- 26Han L, Shi W, Wang B, Zhang P, Li X. Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station. Int J Refrig. 2014; 40: 1-10. doi:10.1016/j.ijrefrig.2013.11.020
- 27Liu J, Su L, Dong K, Sun Q, Shao Z, Huang G. Optimal setting parameters of cooling system under different climate zones for data center energy efficiency. Int J Energy Res. 2021; 45(7): 10086-10099. doi:10.1002/er.6499
- 28Kanbur B, Wu C, Duan F. Multi-criteria thermoeconomic and thermodynamic assessments of the desalination-integrated two-phase liquid-immersion data center cooling system. Int J Energy Res. 2020; 44(13): 10453-10470. doi:10.1002/er.5677
- 29Beitelmal A, Patel C. A steady-state model for the design and optimization of a centralized cooling system. Int J Energy Res. 2010; 34: 1239-1248. doi:10.1002/er.1663
- 30Kanbur B, Wu C, Duan F. Combined heat and power generation via hybrid data center cooling-polymer electrolyte membrane fuel cell system. Int J Energy Res. 2020; 44(6): 4759-4772. doi:10.1002/er.5256
- 31Nada S, Abbas A. Effect of in-row cooling units numbers/locations on thermal and energy management of data centers servers. Int J Energy Res. 2021; 45(14): 20270-20284. doi:10.1002/er.7112
- 32Kothari R, Sahu S, Kundalwal S, Mahalkar P. Thermal performance of phase change material–based heat sink for passive cooling of electronic components: an experimental study. Int J Energy Res. 2020; 45(4): 5939-5963. doi:10.1002/er.6215
10.1002/er.6215 Google Scholar
- 33Chu J, Huang X. Research status and development trends of evaporative cooling air-conditioning technology in data centers. Energy Built Environ. 2021. doi:10.1016/j.enbenv.2021.08.004
10.1016/j.enbenv.2021.08.004 Google Scholar
- 34Xiong X, Fulpagare Y, Lee P. A numerical investigation of fan wall cooling system for modular air-cooled data center. Build Environ. 2021; 205:108287. doi:10.1016/j.buildenv.2021.108287
10.1016/j.buildenv.2021.108287 Google Scholar
- 35Leblay P. Optimisation d'un évaporateur à mini-canaux par la maîtrise de la distribution en fluide frigorigène; 2012. https://tel.archives-ouvertes.fr/tel-00832994/document
- 36Kim M, Bullard C. Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers. Int J Refrig. 2002; 25(3): 390-400. doi:10.1016/s0140-7007(01)00025-1
- 37Chang Y, Wang C. A generalized heat transfer correlation for Iouver fin geometry. Int J Heat Mass Transfer. 1997; 40(3): 533-544. doi:10.1016/0017-9310(96)00116-0
- 38Kandlikar SG, Garimella S, Li D, Colin S, King MR. Heat Transfer and Fluid Flow in Minichannels and Microchannels. Oxford, UK: Butterworth-Heinemann Ltd; 2014.
10.1016/B978-0-08-098346-2.00005-3 Google Scholar
- 39Cengel YA. Heat Transfer: A Practical Approach. Boston, MA: McGraw-Hill; 2003: 785-841.
- 40Akers WW, Deans A, Crosser OK. Condensing heat transfer within horizontal tubes. Chem Eng Process. 1959; 55: 171-176.
- 41Zivi S. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J Heat Transfer. 1964; 86(2): 247-251. doi:10.1115/1.3687113
10.1115/1.3687113 Google Scholar
- 42Lockhart R, Martinelli R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog. 1949; 45: 39-48.
- 43Anand R, Jawahar C, Solomon A, Bellos E. A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low-temperature applications. Int J Refrig. 2020; 120: 296-313. doi:10.1016/j.ijrefrig.2020.08.011
- 44Han K, Yee S, Park S, Lee S, Cho D. A study on the improvement of heat transfer performance in low temperature closed Thermosyphon. KSME Int J. 2002; 16(9): 1102-1111. doi:10.1007/bf02984430
10.1007/bf02984430 Google Scholar
- 45Naresh Y, Balaji C. Thermal performance of an internally finned two phase closed thermosyphon with refrigerant R134a: a combined experimental and numerical study. Int J Therm Sci. 2018; 126: 281-293. doi:10.1016/j.ijthermalsci.2017.11.033
- 46Hassan N, Khan M, Rasul M. Temperature monitoring and CFD analysis of data Centre. Procedia Eng. 2013; 56: 551-559. doi:10.1016/j.proeng.2013.03.159
10.1016/j.proeng.2013.03.159 Google Scholar