Plasma Synthesized Trilayered Rhodium−Platinum−Tin Oxide Nanostructures with Enhanced Tolerance to CO Poisoning and High Electroactivity for Ethanol Oxidation
Haixia Wang
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2 Canada
Search for more papers by this authorShuhui Sun
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2 Canada
Search for more papers by this authorCorresponding Author
Mohamed Mohamedi
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2 Canada
Search for more papers by this authorHaixia Wang
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2 Canada
Search for more papers by this authorShuhui Sun
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2 Canada
Search for more papers by this authorCorresponding Author
Mohamed Mohamedi
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2 Canada
Search for more papers by this authorAbstract
The future of fuel cells technology will require porous or very organized multicomponent catalytic layers that can be prepared by thin film growth methods. Reducing the cost of these energy systems will also necessitate that the catalytic layers be binderless and contain low amount of the noble catalyst until efficient non-noble catalysts are discovered. To address these requirements, monolayered SnO2, Pt and Rh, bi-layered Pt/SnO2 and Rh/Pt and novel tri-layered Rh (various thicknesses)/Pt/SnO2 catalysts supported on carbon paper are synthesized at room temperature via pulsed laser deposition. The catalysts are evaluated for their catalytic performance for the ethanol oxidation reaction (EOR), durability, and tolerance to CO-poisoning. All the Rh/Pt/SnO2 catalysts produce high CO-tolerance, high EOR catalytic activity and durability as compared to pure Pt. The possible mechanism by which SnO2 and Rh atoms enhanced the performance is also considered herein, and an optimal Rh/Pt/SnO2 structure having a 10 nm thickness of Rh layer offers a promising anode catalyst for ethanol fuel cells. Notably, the onset potential for CO oxidation is extraordinarily 430 mV lower than on Pt, and the mass activity for EOR and durability are 2.25 and 4.2 times higher than on Pt.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000949-sup-0001-SuppData-S1.pdf6.1 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Ramachandran, U. Stimming, Energy Environ. Sci. 2015, 8, 3313.
- 2T. Zhao, Z. Liang, J. Xu, in Encyclopedia of Electrochemical Power Sources (Eds: J. Garche), Elsevier, Amsterdam 2009, pp. 362–369.
10.1016/B978-044452745-5.00240-9 Google Scholar
- 3F. Vigier, C. Coutanceau, F. Hahn, E. Belgsir, C. Lamy, J. Electroanal. Chem. 2004, 563, 81.
- 4J. Friedl, U. Stimming, Electrochim. Acta 2013, 101, 41.
- 5Y. Wang, S. Zou, W.-B. Cai, Catalysts 2015, 5, 1507.
- 6S. S. Gupta, J. Datta, J. Electroanal. Chem. 2006, 594, 65.
- 7G. Camara, T. Iwasita, J. Electroanal. Chem. 2005, 578, 315.
- 8H.-F. Wang, Z.-P. Liu, J. Am. Chem. Soc. 2008, 130, 10996.
- 9X. Teng, Anodic Catalyst Design for the Ethanol Oxidation Fuel Cell Reactions, 2013, pp. 478–484.
- 10S. Song, P. Tsiakaras, Appl. Catal. B 2006, 63, 187.
- 11V. Del Colle, J. Souza-Garcia, G. Tremiliosi-Filho, E. Herrero, J. M. Feliu, Phys. Chem. Chem. Phys. 2011, 13, 12163.
- 12S. K. Meher, G. R. Rao, J. Phys. Chem. C 2013, 117, 4888.
- 13J. Cai, Y. Huang, B. Huang, S. Zheng, Y. Guo, Int. J. Hydrogen Energy 2014, 39, 798.
- 14F. Wu, Y. Liu, C. Wu, Rare Metals 2010, 29, 255.
- 15T. Tsurumura, N. Yoshimoto, M. Egashira, M. Morita, Electrochemistry 2012, 80, 916.
- 16H. Zhang, G. Yao, L. Wang, Y. Su, W. Yang, Y. Lin, Appl. Surf. Sci. 2015, 356, 294.
- 17J. Anderson, A. Karakoti, D. J. Diaz, S. Seal, J. Phys. Chem. C 2010, 114, 4595.
- 18C. Xu, P. K. Shen, Chem. Commun. 2004, 2238.
- 19D. J. Díaz, N. Greenletch, A. Solanki, A. Karakoti, S. Seal, Catal. Lett. 2007, 119, 319.
- 20C. Xu, P. K. Shen, J. Power Sources 2005, 142, 27.
- 21Q. He, S. Mukerjee, B. Shyam, D. Ramaker, S. Parres-Esclapez, M. Illan-Gomez, A. Bueno-Lopez, J. Power Sources 2009, 193, 408.
- 22A. O. Neto, M. Linardi, D. M. dos Anjos, G. Tremiliosi-Filho, E. V. Spinacé, J. Appl. Electrochem. 2009, 39, 1153.
- 23L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, J. Phys. Chem. B 2005, 109, 8774.
- 24L. Jiang, L. Colmenares, Z. Jusys, G. Sun, R. Behm, Electrochim. Acta 2007, 53, 377.
- 25J. Silva, R. De Souza, L. Parreira, E. T. Neto, M. Calegaro, M. Santos, Appl. Catal. B 2010, 99, 265.
- 26H. Zhang, C. Hu, X. He, L. Hong, G. Du, Y. Zhang, J. Power Sources 2011, 196, 4499.
- 27E. Higuchi, K. Miyata, T. Takase, H. Inoue, J. Power Sources 2011, 196, 1730.
- 28E. P. Leão, M. J. Giz, G. A. Camara, G. Maia, Electrochim. Acta 2011, 56, 1337.
- 29M. Ahn, In Y. Cha, J. K. Lee, S. J. Yoo, Y.-E. Sung, J. Mater. Chem. A 2015, 3, 17130.
- 30H.-B. Pan, C. M. Wai, New J. Chem. 2011, 35, 1649.
- 31R. Oliveira, M. Santos, P. Nascente, L. Bulhões, E. Pereira, Int. J. Electrochem. Sci. 2008, 3, 970.
- 32J. De Souza, S. Queiroz, K. Bergamaski, E. Gonzalez, F. Nart, J. Phys. Chem. B 2002, 106, 9825.
- 33S. Shen, T. Zhao, J. Xu, Int. J. Hydrogen Energy 2010, 35, 12911.
- 34Y. Shen, M. Z. Zhang, K. Xiao, J. Xi, Chem. Cat.Chem. 2014, 6, 3254.
- 35L. Rao, Y.-X. Jiang, B.-W. Zhang, Y.-R. Cai, S.-G. Sun, Phys. Chem. Chem. Phys. 2014, 16, 13662.
- 36A. Kowal, M. Li, M. Shao, K. Sasaki, M. Vukmirovic, J. Zhang, N. Marinkovic, P. Liu, A. Frenkel, R. Adzic, Nat. Mater. 2009, 8, 325.
- 37M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu, R. Adzic, Electrochim. Acta 2010, 55, 4331.
- 38A. Kowal, S. L. Gojković, K.-S. Lee, P. Olszewski, Y.-E. Sung, Electrochem. Commun. 2009, 11, 724.
- 39E. Spinacé, R. R. Dias, M. Brandalise, M. Linardi, A. O. Neto, Ionics 2010, 16, 91.
- 40W. Du, Q. Wang, C. A. LaScala, L. Zhang, D. Su, A. I. Frenkel, V. K. Mathur, X. Teng, J. Mater. Chem. 2011, 21, 8887.
- 41N. Erini, R. Loukrakpam, V. Petkov, E. A. Baranova, R. Yang, D. Teschner, Y. Huang, S. R. Brankovic, P. Strasser, ACS Catal. 2014, 4, 1859.
- 42N. Erini, P. Krause, M. Gliech, R. Yang, Y. Huang, P. Strasser, J. Power Sources 2015, 294, 299.
- 43P. T. Mai, M. Chiku, E. Higuchi, H. Inoue, J. Electrochem. Soc. 2017, 164, F1011.
- 44A. Barranco, A. Borras, A. R. Gonzalez-Elipe, A. Palmero, Prog. Mater. Sci. 2016, 76, 59.
- 45D. Chrisey, G. Hubler, Pulsed Laser Deposition of Thin Film, Wiley, New York, NY 1994.
- 46M. N. Ashfold, F. Claeyssens, G. M. Fuge, S. J. Henley, Chem. Soc. Rev. 2004, 33, 23.
- 47R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, Wiley, New York, NY 2007.
- 48H. Wang, S. Sun, M. Mohamedi, SN Appl. Sci. 2020, 2, 1.
- 49H. Wang, X. Tong, S. Sun, M. Mohamedi, Electrochim. Acta 2020, 355, 136823.
- 50S. Bazargan, N. Heinig, D. Pradhan, K. Leung, Cryst. Growth Des. 2011, 11, 247.
- 51J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, Thin Solid Films 2001, 391, 198.
- 52C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectronic Spectroscopy, Perkin-Elmer Corp, Eden Prairie, MN 1979.
- 53L. Fang, F. Vidal-Iglesias, S. Huxter, G. A. Attard, P. Wells, Surf. Sci. 2015, 631, 258.
- 54H. Wang, Z. Jusys, J. Power Sources 2006, 154, 351.
- 55K. Kinoshita, D. Ferrier, P. Stonehart, Electrochim. Acta 1978, 23, 45.
- 56T. Schmidt, H. Gasteiger, G. Stäb, P. Urban, D. Kolb, R. Behm, J. Electrochem. Soc. 1998, 145, 2354.
- 57A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 2002, 105, 13.
- 58T. Iwasita, E. Pastor, Electrochim. Acta 1994, 39, 531.
- 59J. Jiang, A. Kucernak, J. Electroanal. Chem. 2003, 543, 187.
- 60C. Popescu, G. Dorcioman, A. C. Popescu, Appl. Laser Ablation: Thin Film Deposition, Nanomater. Synth. Surf. Modif. 2016, 1.
- 61Z. Hamoudi, M. A. El Khakani, M. Mohamedi, J. Electroanal. Chem. 2012, 159, B331.
- 62C. T. Campbell, S.-K. Shi, J. White, Appl. Surf. Sci. 1979, 2, 382.
- 63B. E. Hayden, M. E. Rendall, O. South, J. Am. Chem. Soc. 2003, 125, 7738.
- 64F. Maillard, F. Gloaguen, F. Hahn, J. M. Léger, Fuel Cells 2002, 2, 143.
- 65H. Yuan, D. Guo, X. Li, L. Yuan, W. Zhu, L. Chen, X. Qiu, Fuel Cells 2009, 9, 121.
- 66S. C. Lai, M. T. Koper, Faraday Discuss. 2009, 140, 399.
- 67S. Rousseau, C. Coutanceau, C. Lamy, J.-M. Léger, J. Power Sources 2006, 158, 18.