Sulfur-Implanted Carbon Dots-Embedded Graphene as Ultrastable Anode for Li-Ion Batteries
Ramesh Gottam
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorXiangxin Zhang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 161000 China
Search for more papers by this authorJiang Chen
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXilai Xue
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Yining Zhang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 161000 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorRamesh Gottam
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorXiangxin Zhang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 161000 China
Search for more papers by this authorJiang Chen
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXilai Xue
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Yining Zhang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 161000 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorAbstract
Sulfur doping in carbonaceous materials is an effective approach to improve the performance of Li-ion batteries (LIBs). Herein, sulfur-implanted carbon dots-embedded graphene (S-CDs/rGO) as an anode material for LIBs is reported. A facile method is used to prepare S-CDs/rGO by annealing the mixture of benzyl disulfide (BDS) and graphene oxide (GO). Herein, BDS serves as both the sulfur source and precursor of CDs. S-CDs/rGO as an anode material for LIB delivers initial specific capacities of 938.8 mAh g−1 (first cycle) and 598.6 mAh g−1 (second cycle) at a current density of 100 mA g−1. S-CDs/rGO exhibits superior cycling performance with good capacity retentions of 78.8% (500 cycles), 61.5% (2000 cycles), and 75.7% (2000 cycles) at higher current densities of 1000, 2000, and 3000 mA g−1, respectively. Moreover, the full cell assembly of the prepared S-CDs/rGO as an anode and commercial LiFePO4 as a cathode in the voltage range of 1.5–3.9 V delivers a high reversible capacity of 203.3 mAh g−1 after extensive 1000 cycles at 500 mA g−1 with 51.8% retention (a low fading rate of 0.049% per cycle), rendering it as a promising anode material for application in high-performance LIBs.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000899-sup-0001-SuppData-S1.docx2.7 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Le, F. Y. Jing, W. L. Xiong, Angew. Chem. Int. Ed. 2016, 55, 1.
10.1002/anie.201510990 Google Scholar
- 2D. Cai, C. Wang, C. Shi, N. Tan, J. Alloys Compd. 2018, 731, 235.
- 3H. Hongshuai, S. Lidong, Z. Yan, Z. Guoqiang, C. Jun, J. Xiaobo, Adv. Sci. 2017, 4, 1600243.
10.1002/advs.201600243 Google Scholar
- 4W. Kici´nski, M. Szala, M. Bystrzejewski, Carbon 2014, 68, 1.
- 5Y. S. Yun, V. D. Le, H. Kim, S. J. Chang, S. J. Baek, S. Park, B. H. Kim, Y. H. Kim, K. Kang, H. J. Jin, J. Power Sources 2014, 262, 79.
- 6L. Guilong, L. Xianming, L. Xiaorui, J. Xueyang, X. Haiyan, W. Naiteng, G. Donglei, T. Siye, Energy Technol. 2019, 7, 1900186.
- 7X. Xiangdong, Z. Hongliang, H. Dezhi, Q. Ke, X. Wei, J. R. Mark, Y. Zifeng, ACS Appl. Mater. Interfaces 2018, 10, 37172.
- 8A. P. V. Kumarsaroja, M. Kamaraj, J. Alloys Compd. 2020, 818, 152864.
- 9H. C. Nathan, K. K. Daniel, M. U. Anil, E. J. Elam, E. Vinodkumar, P. G. Vilas, Energy Technol. 2019, 7, 1900621.
- 10P. Yu, Z. C. Xiao, Q. Y. Wang, J. K. Pei, Y. H. Niu, R. Y. Bao, Y. Wang, M.B. Yang, W. Yang, Carbon 2019, 150, 224.
- 11C. Wang, Y. Yang, S. Luo, D. Ren, X. Yu, Energy Technol. 2019, 7, 1800652.
- 12T. Akhter, M. M. Islam, F. S. Nayeem, E. Haque, A. I. Minett, H. K. Liu, K. Konstantinov, S. X. Dou, ACS Appl. Mater. Interfaces 2016, 8, 2078.
- 13C. Zhai, M. Sun, M. Zhu, S. Song, S. Jiang, Appl. Surf. Sci. 2017, 407, 503.
- 14Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205.
- 15J. Tuˇcek, P. Bło´nski, Z. Sofer, P. Simek, M. Petr, M. Pumera, M. Otyepka, R. Zboˇril, Adv. Mater. 2016, 28, 5139.
- 16A. S. Siddiqui, A. Hayat, M. H. Nawaz, M. S. Ahmad, M. Nasir, Appl. Surf. Sci. 2020, 509, 144695.
- 17S. Ito, T. Murata, M. Hasegawa, Y. Bito, Y. Toyoguchi, J. Power Sources 1997, 68, 245.
- 18Y. P. Wu, S. Fang, Y. Jiang, R. Holze, J. Power Sources 2002, 108, 245.
- 19Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Chem. Commun. 2012, 48, 10663.
- 20X. Zhanwei, Z. Yixing, H. Juju, W. Tian, Y. Jun, S. Xuetao, C. Liyun, H. Jianfeng, Chem. Nano. Mat. 2019, 5, 921.
- 21C. J. Muya, K. Zeng, J. Gaoyao, Z. Mengyuan, L. Yajuan, L. Y. Nian, Mater. Chem. Phys. 2019, 229, 226.
- 22J. Zhang, J. Chen, Y. Luo, Y. Chen, X. Wei, G. Wang, R. Wang, Appl. Surf. Sci. 2019, 466, 911.
- 23H. Hongshuai, E. B. Craig, J. Mingjun, Z. Yan, J. Xiaobo, Adv. Mater. 2015, 27, 7861.
- 24X. Lanshu, W. Haibin, G. Jianmin, J. Xiaojuan, J. Alloys Compd. 2019, 809, 151802.
- 25W. Wang, J. Jin, Y. Wu, W. Zhang, H. Jiang, X. Li, G. Wang, J. Mater. Chem. A 2019, 7, 22054.
- 26M. Paloncýová, M. Langer, M. Otyepka, J. Chem. Theory Comput. 2018, 14, 2076.
- 27Z. Shoujun, S. Yubin, Z. Xiaohuan, S. Jieren, Z. Junhu, Y. Bai, Nano Res. 2015, 8, 355.
- 28W. Jiacheng, M. Ruguang, Z. Zhenzhen, L. Guanghui, L. Qian, Sci. Rep. 2015, 5, 9304.
- 29J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, H. S. Shin, Angew. Chem. Int. Ed. 2013, 125, 13996.
10.1002/ange.201307475 Google Scholar
- 30L. Xia, Y. Zhou, J. Ren, H. Wu, D. Lin, F. Xie, W. Jie, K. H. Lam, C. Xu, Q. Zheng, Energy Fuels 2018, 32, 9997.
- 31Y. Hu, J. Yang, J. Tian, L. Jia, J. Yu, Carbon 2014, 77, 775.
- 32R. Li, J. Li, K. Qi, X. Ge, Q. Zhang, B. Zhang, Appl. Surf. Sci. 2018, 433, 367.
- 33W. Hongri, H. Xiaofang, Int. J. Hydrogen Energy 2019, 44, 22250.
- 34C. Zhou, K. Zhang, M. Hong, Y. Yang, N. Hu, Y. Su, L. Zhang, Y. Zhang, Chem. Eng. J. 2010, 385, 123720.
- 35X. Zhou, J. Xie, J. Yang, Y. Zou, J. Tang, S. Wang, L. Ma, Q. Liao, J. Power Sources 2013, 243, 993.
- 36Y. Zhang, Y. Zhao, Z. Bakenov, M. Tuiyebayeva, A. Konarov, P. Chen, Electrochim. Acta 2014, 143, 49.
- 37W. Hongri, H. Xiaofang, J. Colloid Interface Sci. 2020, 558, 242.
- 38W. Guoxiu, S. Xiaoping, Y. Jane, P. Jinsoo, Carbon 2009, 47, 2049.
- 39M. Chen, J. Liu, D. Chao, J. Wang, J. Yin, J. Lin, F. H. Jin, S. Z. Xiang, Nano Energy 2014, 9, 364.
- 40L. Ruihong, L. Junli, Q. Kaiyu, G. Xin, Z. Qiwei, Z. Bangwen, Appl. Surf. Sci. 2018, 433, 367.
- 41L. Wang, L. Hu, W. Yang, D. Liang, L. Liu, S. Liang, C. Yang, Z. Fang, Q. Dong, C. Deng, Nanomaterials 2019, 9, 1203.
- 42W. Songping, L. Mingjia, T. Xiaodong, J. Chan, Chem. Eng. J. 2017, 313, 610.
- 43J. Li, H. Lu, D. Zhang, J. Li, T. Lu, X. Wang, L. Pan, Inorg. Chem. Front. 2019, 6, 2104.
- 44L. W. Ji, H. H. Zheng, A. Ismach, Z. K. Tan, S. D. Xun, E. Lin, V. Battaglia, V. Srinivasan, Y. G. Zhang, Nano Energy 2012, 1, 164.
- 45J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M. G. Betti, R. Cingolani, M. Gemmi, C. Mariani, S. Panero, V. Pellegrini, B. Scrosati, Nano Lett. 2014, 14,, 4901.
- 46A. P Varghese, B. Gangaja, S. Nair, D. Santhanagopalan, Mater. Res. Express. 2019, 6, 075003.
- 47L. S. Jiao, Z. B. Liu, Z. H. Sun, T. S. Wu, Y. Z. Gao, H. Y. Li, F. H. Li, L. Niu, Electrochem. Acta 2018, 259, 48.
- 48A. Iqbal, L. Chen, Y. Chen, G. Yu-Xian, F. Fang, L. D-C. Li, Int. J. Min. Metall. Mater. 2018, 25, 1473.
- 49M. S. Balogun, X. X. Zeng, W. T. Qiu, Y. Luo, A. Onasanya, T. Olaniyi, Y. X. Tong, ] J. Mater. Chem. A 2016, 4, 9844.
- 50G. N. Zhu, L. Chen, Y. G. Wang, C. X. Wang, R. C. Che, Y. Y. Xia, Adv. Funct. Mater. 2013, 23, 640.
- 51V. Aravindan, W. Chuiling, S. Madhavi, RSC Adv. 2012, 2, 7534.
- 52W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.