Review on Synthesis and Catalytic Coupling Mechanism of Highly Active Electrocatalysts for Water Splitting
Wenhao Liu
State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorDong Cao
State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Daojian Cheng
State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorWenhao Liu
State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorDong Cao
State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Daojian Cheng
State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorAbstract
Hydrogen (H2), derived from electrochemical water splitting, is usually believed to be a promising alternative for fossil energy due to its environmentally friendly and renewable traits. At present, IrO2 and Pt/C are regarded as the state-of-the-art electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, but their poor durability and high cost severely impede the wide applications. Thus, constructing highly active, stable, and low-cost electrocatalysts for OER and HER is significantly important. Herein, the synthesis methods, construction of active sites, and catalytic coupling mechanisms for water splitting are fully summarized. In particular, the alloy effect, interface effect, various defects, and doping effects in electrocatalysts are the main reasons to improve the intrinsic catalytic activities. Finally, the future development trend of electrochemical catalysts for water splitting is prospected in the conclusion. It is believed that a comprehensive understanding of materials design strategies is provided, which is beneficial to the development of water splitting.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M.-R. Liu, Q.-L. Hong, Q.-H. Li, Y. Du, H.-X. Zhang, S. Chen, T. Zhou, J. Zhang, Adv. Funct. Mater. 2018, 28, 1801136.
- 2T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, Nat. Catal. 2019, 2, 763.
- 3Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- 4S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 2016, 6, 8069.
- 5M. I. Jamesh, J. Power Sources 2016, 333, 213.
- 6X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
- 7N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao, S. Liu, J. Mater. Chem. A 2018, 6, 19912.
- 8P. F. Liu, S. Yang, B. Zhang and H. G. Yang, ACS Appl. Mater. Interfaces 2016, 8, 34474.
- 9D. Cao, D. J. Cheng, Chem. Commun. 2019, 55, 8154.
- 10X. K. Huang, X. P. Xu, C. Li, D. F. Wu, D. J. Cheng, D. P. Cao, Adv. Energy Mater. 2019, 9, 10.
- 11W. Kreuter, H. Hofmann, Int. J. Hydrogen Energy 1998, 23, 661.
- 12X. Y. Tian, P. C. Zhao, W. C. Sheng, Adv. Mater. 2019, 31, 7.
- 13J. M. Bockris, E. Potter, J. Electrochem. Soc. 1952, 99, 169.
- 14W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529.
- 15Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang, Z. Zhou, Nanoscale 2016, 8, 1676.
- 16P. Nikolaidis, A. Poullikkas, Renewable Sustainable Energy Rev. 2017, 67, 597.
- 17A. R. Zeradjanin, J. P. Grote, G. Polymeros, K. J. J. Mayrhofer, Electroanalysis 2016, 28, 2256.
- 18J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chem. Rev. 2019, 120, 851.
- 19Z. Li, Y. Feng, Y. L. Liang, C. Q. Cheng, C. K. Dong, H. Liu, X. W. Du, Adv. Mater. 2020, 1908521.
- 20X. Huang, D. Wu, D. Cheng, J. Colloid Interface Sci. 2017, 507, 429.
- 21I. S. Kwon, I. H. Kwak, T. T. Debela, H. G. Abbas, Y. C. Park, J.-P. Ahn, J. Park, H. S. Kang, ACS Nano 2020, 14, 6295.
- 22M. Miles, M. Thomason, J. Electrochem. Soc. 1976, 123, 1459.
- 23N. Sasikala, K. Ramya, K. S. Dhathathreyan, Energy Convers. Manage. 2014, 77, 545.
- 24N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.
- 25S. Trasatti, Electrochim. Acta 1984, 29, 1503.
- 26Z. Fang, L. Peng, H. Lv, Y. Zhu, C. Yan, S. Wang, P. Kalyani, X. Wu, G. Yu, ACS Nano 2017, 11, 9550.
- 27Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.
- 28J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751.
- 29Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J.-P. M. Veder, D. Guan, R. O’Hayre, M. Li, G. Wang, Nat. Commun. 2020, 11, 1.
- 30H. N. Nong, L. J. Falling, A. Bergmann, M. Klingenhof, H. P. Tran, C. Spöri, R. Mom, J. Timoshenko, G. Zichittella, A. Knop-Gericke, Nature 2020, 587, 408.
- 31Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399.
- 32D. Y. Chung, P. P. Lopes, P. F. B. D. Martins, H. He, T. Kawaguchi, P. Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, Nat. Energy 2020, 5, 222.
- 33Y. Li, Z. S. Wu, P. Lu, X. Wang, W. Liu, Z. Liu, J. Ma, W. Ren, Z. Jiang, X. Bao, Adv. Sci. 2020, 7, 1903089.
- 34H. Ren, X. Sun, C. Du, J. Zhao, D. Liu, W. Fang, S. Kumar, R. Chua, S. Meng, P. Kidkhunthod, ACS Nano 2019, 13, 12969.
- 35X. Li, C. Wang, H. Xue, H. Pang, Q. Xu, Coord. Chem. Rev. 2020, 422, 213468.
- 36Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 37H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C. P. Li and M. Du, Adv. Funct. Mater. 2020, 30, 1910596.
- 38Z. Jin, A. J. Bard, Proc. Natl. Acad. Sci. 2020, 117, 12651.
- 39S. Yang, R. Du, Y. Yu, Z. Zhang, F. Wang, Nano Energy 2020, 77, 105057.
- 40J. Xia, H. Zhao, B. Huang, L. Xu, M. Luo, J. Wang, F. Luo, Y. Du, C. H. Yan, Adv. Funct. Mater. 2020, 30, 1908367.
- 41Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin, X. Yan, Y. Xing, H. Li, R. Si, S. Zhou, Nat. Commun. 2020, 11, 1215.
- 42S. H. Ahn, A. Manthiram, Small 2020, 16, 2002511.
- 43Z. Zou, T. Wang, X. Zhao, W.-J. Jiang, H. Pan, D. Gao, C. Xu, ACS Catal. 2019, 9, 7356.
- 44D. Cao, H. Xu, D. Cheng, Adv. Energy Mater. 2020, 10, 1903038.
- 45X. Zhong, J. Tang, J. Wang, M. Shao, J. Chai, S. Wang, M. Yang, Y. Yang, N. Wang, S. Wang, B. Xu, H. Pan, Electrochim. Acta 2018, 269, 55.
- 46J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
- 47E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. D. Lou, Energy Environ. Sci. 2018, 11, 872.
- 48Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 2020, 13, 1593.
- 49Z. Shuying, C. Bin, L. Zhihong, J. Hunan Univ. Technol. 2010, 24, 14.
- 50G. Li, Z. Chen, Y. Li, D. Zhang, W. Yang, Y. Liu, L. Cao, ACS Nano 2020, 14, 1707.
- 51B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
- 52A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65.
- 53C. Ling, L. Shi, Y. Ouyang, X. C. Zeng, J. Wang, Nano Lett. 2017, 17, 5133.
- 54Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, Chem. Rev. 2020, 120, 12217.
- 55J. Zhang, X. Xu, L. Yang, D. Cheng, D. Cao, Small Methods 2019, 3, 1900653.
- 56Y. Zhang, L. Guo, L. Tao, Y. Lu, S. Wang, Small Methods 2019, 3, 1800406.
- 57K. Qi, M. Chhowalla, D. Voiry, Mater. Today 2020, 40, 173.
- 58Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 59D. Cao, J. Wang, H. Xu, D. Cheng, Small 2020, 16, 2000924.
- 60L. Luo, Z. Duan, H. Li, J. Kim, G. Henkelman, R. M. Crooks, J. Am. Chem. Soc. 2017, 139, 5538.
- 61Y. Zhang, Q. Shao, S. Long, X. Huang, Nano Energy 2018, 45, 448.
- 62J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G. C. Wang, S. Guo, Adv. Mater. 2017, 29.
- 63W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, R. R. Adzic, Angew. Chem., Int. Ed. 2012, 51, 6131.
- 64Y. Zhang, Q. Shao, Y. Pi, J. Guo, X. Huang, Small 2017, 13, 1700355.
- 65Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He, Z. Lin, Nano Energy 2018, 50, 212.
- 66F. Qin, Z. Zhao, M. K. Alam, Y. Ni, F. Robles-Hernandez, L. Yu, S. Chen, Z. Ren, Z. Wang, J. Bao, ACS Energy Lett. 2018, 3, 546.
- 67Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat, H. J. Fan, Adv. Energy Mater. 2016, 6, 1600221.
- 68J. Xu, T. Liu, J. Li, B. Li, Y. Liu, B. Zhang, D. Xiong, I. Amorim, W. Li, L. Liu, Energy Environm. Sci. 2018, 11, 1819.
- 69M. Li, T. Liu, X. Bo, M. Zhou, L. Guo, J. Mater. Chem. A 2017, 5, 5413.
- 70D. Y. Chao Xie, H. Li, S. Du, W. Chen, Y. Wang, Y. Zou, R. Chen, S. Wang, ACS Catalysis 2020, 9, 11082.
- 71Q. Ding, B. Song, P. Xu, S. Jin, Chem 2016, 1, 699.
- 72W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, e1907879.
- 73J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei, J. Feng, Adv. Sci. 2019, 6, 1900246.
- 74Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, J. Am. Chem. Soc. 2018, 140, 2610.
- 75J. Zhu, S. Mu, Adv. Funct. Mater. 2020, 30, 2001097.
- 76X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T. Asefa, Angew. Chem., Int. Ed. 2014, 53, 4372.
- 77J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 2017, 29, 1605838.
- 78Y. Zhao, C. Chang, F. Teng, Y. Zhao, G. Chen, R. Shi, G. I. N. Waterhouse, W. Huang, T. Zhang, Adv. Energy Mater. 2017, 7, 1700005.
- 79A. Sivanantham, S. Shanmugam, Appl. Catal., B 2017, 203, 485.
- 80C. Hu, L. Zhang, Z. J. Zhao, A. Li, X. Chang, J. Gong, Adv. Mater. 2018, 30, 1705538.
- 81H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, ACS Nano 2017, 11, 11574.
- 82Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, Adv. Mater. 2017, 29, 1700017.
- 83B. Zhang, Z. Qi, Z. Wu, Y. H. Lui, T.-H. Kim, X. Tang, L. Zhou, W. Huang, S. Hu, ACS Energy Lett. 2018, 4, 328.
- 84Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 2019, 31, 1802880.
- 85Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin, J. Xie, M. Zhao, L. Song, L. Dai, H. Liu, Adv. Sci. 2019, 6, 1801829.
- 86H. Xu, H. Shang, C. Wang, Y. Du, Coord. Chem. Rev. 2020, 418, 213374.
- 87N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke, B. Beckhoff, F. Lai, R. Dong, H. Sun, B. Geng, Appl. Catal., B 2020, 261, 118193.
- 88Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He, S. Mu, Nano Energy 2019, 57, 746.
- 89J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem., Int. Ed. 2016, 55, 6702.
- 90H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg, R. B. Wehrspohn, Adv. Funct. Mater. 2018, 28, 1706847.
- 91X. Han, Y. Niu, C. Yu, Z. Liu, H. Huang, H. Huang, S. Li, W. Guo, X. Tan, J. Qiu, Nano Energy 2020, 69, 104367.
- 92J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater. 2016, 28, 215.
- 93X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, Adv. Mater. 2020, 32, 2003414.
- 94Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y. Q. Zhao, D. Gao, F. Cheng, P. Xi, Small 2018, 14, 1801070.
- 95X. Huang, X. Xu, X. Luan, D. Cheng, Nano Energy 2020, 68, 104332.
- 96A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, ACS Appl. Mater. Interfaces 2017, 9, 2240.
- 97B. Xiong, L. Chen, J. Shi, ACS Catal. 2018, 8, 3688.
- 98M. Li, H. Wang, W. Zhu, W. Li, C. Wang, X. Lu, Adv. Sci. 2020, 7, 1901833.
- 99Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan, J.-S. Hu, ACS Nano 2016, 10, 8851.
- 100S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa, M. Wu, Adv. Funct. Mater. 2017, 27, 1606585.
- 101J. Shan, T. Ling, K. Davey, Y. Zheng, S.-Z. Qiao, Adv. Mater. 2019, 31, 1900510.
- 102Q. Zhou, Z. Shen, C. Zhu, J. Li, Z. Ding, P. Wang, F. Pan, Z. Zhang, H. Ma, S. Wang, Adv. Mater. 2018, 30, 1800140.
- 103J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, Energy Environ. Sci. 2016, 9, 2789.
- 104B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
- 105H. Topsøe, B. S. Clausen, F. E. Massoth, J. Anderson, M. Boudart, Hydrotreat. Catal. 1996, 11, 310.
- 106T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
- 107N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem., Int. Ed. 2015, 127, 6349.
10.1002/ange.201501616 Google Scholar
- 108J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem., Int. Ed. 2016, 128, 6814.
10.1002/ange.201602237 Google Scholar
- 109S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa, M. Wu, Adv. Funct. Mater. 2017, 27, 1606585.
- 110M. R. Liu, Q. L. Hong, Q. H. Li, Y. Du, H. X. Zhang, S. Chen, T. Zhou, J. Zhang, Adv. Funct. Mater. 2018, 28, 1801136.
- 111Y. Lin, H. Wan, D. Wu, G. Chen, N. Zhang, X. Liu, J. Li, Y. Cao, G. Qiu, R. Ma, J. Am. Chem. Soc. 2020, 142, 7317.
- 112Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2, 2551.