Toward Large-Scale Hydrogen Production from Water: What Have We Learned and What Are the Main Research Hurdles to Cross for Commercialization?
Corresponding Author
Hicham Idriss
SABIC – Corporate Research and Development at King Abdullah University for Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1E 6BT UK
Search for more papers by this authorCorresponding Author
Hicham Idriss
SABIC – Corporate Research and Development at King Abdullah University for Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1E 6BT UK
Search for more papers by this authorAbstract
The focus of this study is evaluating the status of the most promising methods for water splitting to H2 and O2 with their implementation in mind. These are thermochemical water splitting, photocatalytic (PC) and photo-electrocatalytic (PEC) water splitting, and water electrolysis. In addition to evaluating their coherence, potential, and cost, some misconceptions in the PC H2 production from water over suspended powder catalysts are highlighted. A few needed research directions at the fundamental level together with the main hurdles to cross for large-scale production are presented and in some cases discussed. Although an increasing level of activity has taken place in the last few years for large-scale hydrogen production from water, this is still marginal (at the megawatt scale). A considerable investment in different technologies is needed for a noticeable impact on the environment to occur with an objective to decrease the world dependence on fossil fuels (the terrawatt scale).
Conflict of Interest
The author declares no conflict of interest.
References
- 1R. Kembleton, in Managing Global Warming, Academic Press, London 2019, pp. 199-220.
10.1016/B978-0-12-814104-5.00005-3 Google Scholar
- 2F. Birol, The Future of Hydrogen, Seizing Today's Opportunities, Report prepared by the IEA for the G20, Japan, International Energy Agency, Paris 2019.
- 3B. Parkinson, P. Balcombe, J. F. Speirs, A. D. Hawkes, K. Hellgardt, Energy Environ. Sci. 2019, 12, 19.
- 4M. Wang, G. Wang, Z. Sun, Y. Zhang, D. Xu, Global Energy Int. 2019, 2, 43.
- 5C. L. Muhich, B. D. Ehrhart, I. Al-Shankiti, B. J. Ward, C. B. Musgrave, A. W. Weimer, WIREs Energy Environ. 2016, 5, 261.
- 6L. Xiao, S.-Y. Wu, Y.-R. Li, Renewable Energy 2012, 41, 1.
- 7H. Idriss, M. A. Barteau, Adv. Catal. 2000, 45, 261.
- 8S. Abanades, Chem. Eng. 2019, 3, 1.
- 9I. Al-Shankiti, Y.-M. Choi, F. Al-Otaibi, H. Idriss, US Patent 9421537, 2016, US Patent 9675961, 2017.
- 10I. Al-Shankiti, F. M. Al-Otaibi, Y. Al-Salik, H. Idriss, Top. Catal. 2013, 56, 1129.
- 11Y. Al-Salik, H. Idriss, Syngas production from binary and ternary cerium-based oxides, WO 2015189787 A2 20151217; WO 2015189787 A3 20160317; CN 106458597 A 20170222; EP 3157859 A2 20170426; US 2018099265 A1 20180412, 2018.
- 12B. D. Ehrhart, C. L. Muhich, I. Al-Shankiti, A. W. Weimer, Int. J. Hydrogen Energy 2016, 41, 19881
- 13I. Al-Shankiti, B. D. Ehrhart, A. W. Weimer, Sol. Energy 2017, 156, 21.
- 14C. Lee, Q. Meng, H. Kaneko, Y. Tamaura, J. Sol. Energy Eng. 2013, 135, 11002.
- 15F. Call, M. Roeb, M. Schmücker, C. Sattler, R. Pitz-Paal, J. Phys. Chem. C 2015, 119, 6929.
- 16C. Muhich, M. Hoes, A. Steinfeld, Acta Mater. 2018, 144, 728.
- 17C. Gladen, J. H. Davidson, Sol. Energy 2016, 139, 524.
- 18J.-P. Säck, S. Breuer, P. Cotelli, A. Houaijia, M. Lange, M. Wullenkord, C. Spenke, M. Roeb, C. Sattler, Sol. Energy 2016, 135, 232.
- 19https://www.solarpaces.org/worlds-largest-solar-reactor-will-split-h2o-hydrogen/ (accessed: December 2016).
- 20M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, W. Reinalter, M. Meyer-Grünefeldt, C. Sattler, A. Lopez, A. Vidal, A. Elsberg, P. Stobbe, D. Jones, A. Steele, S. Lorentzou, C. Pagkoura, A. Zygogianni, C. Agrafiotis, A. G. Konstandopoulos, Sol. Energy 2011, 85, 634.
- 21W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, A. Steinfeld, Science 2010, 330, 1797.
- 22J. Scaranto, H. Idriss, Top. Catal. 2015, 58, 1443.
- 23Z.-K. Han, L. Zhang, M. Liu, M. V. Ganduglia-Pirovano, Y. Gao, Front. Chem. 2019, 7, 436.
- 24M. Moser, M. Pecchi, T. Fend, Energies 2019, 12, 352.
- 25B. D. James, G. N. Baum, J. Perez, K. N. Baum, Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production, Final report, DEO Contract Number: GS-10F-009J, DOE, Washington, DC 2009.
10.2172/1218403 Google Scholar
- 26K. A. Connelly, A. K. Wahab, H. Idriss, Mater. Renew. Sustain Energy 2012, 1, 3.
10.1007/s40243-012-0003-9 Google Scholar
- 27K. Wahab, S. Ould-Chikh, K. Meyer, H. Idriss, J. Catalysis 2017, 352, 657.
- 28L. Sinatra, A. P. LaGrow, W. Peng, A. R. Kirmani, A. Amassian, H. Idriss, O. M. Bakr, J. Catalysis 2015, 322, 109.
- 29D. Sarkar, C. K. Ghosh, S. Mukherjee, K. K. Chattopadhyay, ACS Appl. Mater. Interfaces 2012, 5, 331.
- 30T. T. Isimjan, P. Maity, J. Llorca, T. Ahmed, M. R. Parida, O. Mohammed, H. Idriss, ACS Omega 2017, 2, 4828.
- 31H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 2016, 3, 1500389.
- 32S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, M. Moskovits, Nat. Nanotechnol. 2013, 8, 247.
- 33G. I. N. Waterhouse, A. K. Wahab, M. Al-Oufi, V. Jovic, D. Sun-Waterhouse, D. Anjum, J. Llorca, H. Idriss, Sci. Rep. 2013, 3, 2849.
- 34M. A. Khan, H. Idriss, WIREs Energy Environ. 2017, 6, 1.
- 35H. AlGhamdi, B. Katsiev, A. K. Wahab, J. Llorca, H. Idriss, Chem. Commun. 2017, 53, 13051.
- 36M. A. Nadeem, H. Idriss, Chem. Commun. 2018, 54, 5197.
- 37S. R. Damkale, S. S. Arbuj, G. G. Umarji, R. P. Panmand, S. K. Khore, R. S. Sonawane, S. B. Rane, B. B. Kale, Sustainable Energy Fuels 2019, 3, 3406.
- 38W.-Y. Cheng, T.-H. Yu, K.-J. Chao, S.-Y. Lu, Int. J. Hydrogen Energy 2013, 38, 9665.
- 39D. A. Vermaas, M. Sassenburg, W. A. Smith, J. Mater. Chem. A 2015, 3, 19556.
- 40T. Marino, A. Figoli, A. Molino, P. Argurio, R. Molinari, Chem. Eng. 2019, 3, 5.
- 41S.-C. Yu, C.-W. Huang, C.-H. Liao, J. C. S. Wu, S.-T. Chang, K.-H. Chen, J. Membr. Sci. 2011, 382, 291.
- 42J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919.
- 43T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li, J. Phys. Chem. C 2007, 111, 8005.
- 44M. Bowker, H. Bahruji, J. Kennedy, W. Jones, G. Hartley, C. Morton, Catal. Lett. 2015, 145, 214.
- 45P. Panagiotopoulou, E. E. Karamerou, D. I. Kondarides, Catal. Today 2013, 209, 91.
- 46K. Wahab, M. A. Nadeem, H. Idriss, Front. Chem. 2019, 7, 780.
- 47H. Idriss, Catal. Sci. Technol. 2019, 10, 304.
- 48M. Al-Jodai, I. Ul Haque, N. A. Al Dalaan, IPN, WO 2017/089924 Al, 2017.
- 49M. Al-Jodai, I. Ul Haque, N. A. Al Dalaan, 20180346329, 2018.
- 50S. Alsayegh, J. R. Johnson, B. Ohs, J. Lo, M. Wessling, Int. J. Hydrogen Energy 2017, 42, 6000.
- 51S. Alsayegh, J. R. Johnson, X. Wei, B. Ohs, J. Lohaus, M. Wessling, Int. J. Hydrogen Energy 2017, 42, 21793.
- 52F. Al-Otaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, Z. Mi, Nano Lett. 2013, 13, 4356.
- 53X. Guan, F. A. Chowdhury, N. Pant, L. Guo, L. Vayssieres, Z. Mi, J. Phys. Chem. C 2018, 122, 13797.
- 54M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal, T. K. Ng, T. Isimjan, H. Idriss, B. S. Ooi, Nano Energy 2017, 37, 158.
- 55M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, B. S. Ooi, J. Mater. Chem. A 2018, 6, 6922.
- 56K. Mudiyanselage, H. Idriss, US18T&I0092-US-PSP, Serial Number 62864902, 2019.
- 57Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611.
- 58J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 2015, 347, 970.
- 59T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411.
- 60W.-H. Cheng, M. H. Richter, M. M. May, J. Ohlmann, D. Lackner, F. Dimroth, T. Hannappel, H. A. Atwater, H.-J. Lewerenz, ACS Energy Lett. 2018, 3, 1795.
- 61E. Verlage, S. Hu, R. Liu, R. J. Jones, K. Sun, C. Xiang, N. S. Lewis, H. A. Atwater, A. Monolithically Integrated, Intrinsically Safe, Energy Environ. Sci. 2015, 8, 3166.
- 62K. Sun, R. Liu, Y. Chen, E. Verlage, N. S. Lewis, C. Xiang, Adv. Energy Mater. 2016, 6, 1600379.
- 63M. A. Khan, I. Al-Shankiti, A. Ziani, N. Wehbe, H. Idriss, Angew. Chem., Int. Ed. 2020, 59, 14802.
- 64K. Mudiyanselage, M. A. Nadeem, H. A. Raboui, H. Idriss, Surf. Sci. 2020, 699, 121625.
- 65L. Kornblum, D. P. Fenning, J. Faucher, J. Hwang, A. Boni, M. G. Han, M. D. Morales-Acosta, Y. Zhu, E. I. Altman, M. L. Lee, C. H. Ahn, F. J. Walker, Y. Shao-Horn, Energy Environ. Sci., 2017, 10, 377.
- 66G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, J. Photochem. Photobiol., A 1995, 89, 177.
- 67M. J. Berr, F. F. Schweinberger, M. Döblinger, K. E. Sanwald, C. Wolff, J. Breimeier, A. S. Crampton, C. J. Ridge, M. Tschurl, U. Heiz, F. Jäckel, J. Feldmann, Nano Lett. 2012, 12, 5903.
- 68K. Katsiev, G. Harrison, G. Thornton, H. Idriss, ACS Catal. 2019, 9, 8294.
- 69S. Al-Sayegh, R. Varjian, Y. Al-Salik, K. Katsiev, T. T. Isimjan, H. Idriss, ACS Energy Lett. 2020, 5, 540.
- 70Sakaka's 300 MW Solar PV Plant (Sakaka, Saudi Arabia) started operation in December 2019 by ACWA Power. The cost of delivered electricity is 2.34 ¢ kWh, https://www.arabnews.com/node/1592431/corporate-news (accessed: December 2019).
- 71V. Esposito, Joule 2017, 1, 651.
- 72Path to hydrogen competitiveness A cost perspective, Hydrogen Council, 2020. https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed: January 2020).
- 73J. J. Kaczur, H. Yang, Z. Liu, S. D. Sajjad, R. I. Masel, Front. Chem. 2018, 6, 263.
- 74L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys.: X 2019, 4, 1548305.
- 75https://energypedia.info/wiki/Solar_Cells_and_Modules. (accessed: January 2019).
- 76M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, A. W. Y. Ho-Baillie, Prog. Photovoltaics Res. Appl. 2019, 27, 3.
- 77M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, H. A. Atwater, Appl. Phys. Lett. 2013, 102, 033901.
- 78K. Shanks, J. P. Ferrer-Rodriguez, E. F. Fernández, F. Almonacid, S. Pedro Pérez-Higueras, T. Senthilarasu, A. Mallick, Sol. Energy 2018, 169, 457.
- 79J. Zeitouny, E. A. Katz, A. Dollet, A. Vossier, Sci. Rep. 2017, 7, 1766.
- 80M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, Energy Environ. Sci. 2016, 9, 2354.
- 81A. Rodriguez, M. A. Modestino, D. Psaltis, C. Moser, Energy Environ. Sci. 2014, 7, 3828.
- 82A. Braun, X-ray Studies on Electrochemical Systems, De Gruyter Textbook, De Gruyter, Berlin 2017.
10.1515/9783110427882 Google Scholar
- 83M. Wang, L. Árnadóttir, Z. J. Xu, Z. Feng, Nano-Micro Lett. 2019, 11, 47.
- 84Y. Gründer, C. A. Lucas, Nano Energy 2016, 29, 378.
- 85T. J. Penfold, J. Szlachetko, F. G. Santomauro, A. Britz, W. Gawelda, G. Doumy, A. M. March, S. H. Southworth, J. Rittmann, R. Abela, M. Chergui, C. J. Milne, Nat. Commun. 2018, 9, 478.
- 86D. Ruan, J. Xue, M. Fujitsuka, T. Majima, Chem. Commun. 2019, 55, 6014.
- 87R. Berera, R. van Grondelle, J. T. M. Kennis, Photosynth. Res. 2009, 101, 105.
- 88V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, M. A. Iatì, J. Phys.: Condens. Matter 2017, 29, 203002.
- 89J. S. Manser, P. V. Kamat, Nat. Photonics 2014, 8, 737.
- 90P. Maity, K. Katsiev, O. F. Mohammed, H. Idriss, J. Phys. Chem. C 2018, 122, 8925.
- 91M. E. Casida, H.-R. Miquel, Ann. Rev. Phys. Chem. 2012, 63, 287.
- 92J. R. Choi, Front. Phys. 2020, 8, 189.
- 93C. Liu, E. Jacubivoka, Chem Sci. 2017, 8, 5979.
- 94E. Berardo, M. A. Zwijnenburg, J. Phys. Chem. C 2015, 119, 13384.
- 95T. Merz, M. Schütz, in Chemical Photocatalysis (Ed: B. König), De Gruyter, Berlin 2013, pp. 263–294.
- 96J. Cheng, J. VandeVondele, M. Sprik, J. Phys. Chem. C 2014, 118, 5437.
- 97F. Nunzi, F. De Angelis, A. Selloni, J. Phys. Chem. Lett. 2016, 7, 3597.
- 98A. Ziani, I. Al-Shankiti, A. Khan, H. Idriss, Energy Fuels 2020, 34, 13179.
- 99P. Kim-Lohsoontorna, J. Bae, J. Power Sources 2011, 196, 7161.
- 100Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev. 2017, 46, 1427.
- 101D. Peterson, E. Miller, Hydrogen Production Cost from Solid Oxide Electrolysis, DOE Hydrogen and Fuel Cells Program Record #: 16014, https://www.hydrogen.energy.gov/pdfs/16014_h2_production_cost_solid_oxide_electrolysis.pdf (accessed: February 2016).
- 102Hydrogen conversion, https://h2tools.org/hyarc/calculator-tools/energy-equivalency-fuels (accessed: August 2020).
- 103S. Dillich, T. Ramsden, M. Melaina, Hydrogen Production Cost Using Low-Cost Natural Gas, US Department of Energy Hydrogen and Fuel Cells Program, US Department of Energy, Washington, DC 2012.
- 104M. A. Khan, I. Al-Shankiti, A. Ziani, H. Idriss, Sustainable Energy Fuels 2020, unpublished.