Recent Progress in Electrocatalytic Glycerol Oxidation
Linfeng Fan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorBowen Liu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorXi Liu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorNangan Senthilkumar
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Genxiang Wang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorLinfeng Fan
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorBowen Liu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorXi Liu
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorNangan Senthilkumar
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Genxiang Wang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorAbstract
Glycerol, as the major by-product of biodiesel, can be oxidized into diverse value-added chemical products via either traditional chemical methods or electrochemical routes. Electrocatalytic glycerol oxidation reaction (GOR) driven by renewable-derived electricity (e.g., wind and solar) is a promising pathway for fine chemicals production. In an electrochemical cell, GOR can be coupled with various cathodic reactions, including hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), and oxygen reduction reaction (ORR); in this manner, different benefits of either energy effectiveness or additional value-added products can be obtained depending on the cathode reduction reaction selected. Comprehensively understanding of electrocatalytic GOR and the associated processes is of great significance to promote its industrial application. Herein, recent progress of GOR is focused on. The background of biomass-derived glycerol valorization to energy and value-added chemicals as well as the electrochemical conversion techniques via GOR is introduced. Then, the electrocatalytic reaction pathways, the potential application of GOR, and the measurement method for products are also discussed and summarized. Special emphasis is put on the design and the development of high-selectivity and high-activity electrocatalysts for GOR. Finally, the challenges and the future prospects in the fields of GOR are highlighted.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) X. Guo, H. Du, F. Qu, J. Li, J. Mater. Chem. A 2019, 7, 3531; b) B. Katryniok, H. Kimura, E. Skrzyńska, J.-S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Green Chem. 2011, 13, 1960; c) H. B. Aditiya, T. M. I. Mahlia, W. T. Chong, H. Nur, A. H. Sebayang, Renewable Sustainable Energy Rev. 2016, 66, 631; d) H. Du, R.-M. Kong, X. Guo, F. Qu, J. Li, Nanoscale 2018, 10, 21617.
- 2a) C. Chen, K. Ma, Q. Zhu, F. Tan, Y. Wang, M. He, G. Hu, J. Clean. Prod. 2020, 260, 120999; b) F. S. Mirhashemi, H. Sadrnia, J. Energy Inst. 2020, 93, 129; c) G. D. Watt, Renewable Energy 2014, 72, 99; d) M. Simoes, S. Baranton, C. Coutanceau, ChemSusChem 2012, 5, 2106.
- 3a) S. K. Narisa Binhayeeding, K. Sangkharak, Energy Procedia 2017, 138, 895;
10.1016/j.egypro.2017.10.130 Google Scholarb) X. Luo, X. Ge, S. Cui, Y. Li, Bioresour. Technol. 2016, 215, 144.
- 4a) G. Dodekatos, S. Schünemann, H. Tüysüz, ACS Catal. 2018, 8, 6301; b) J. Janaun, N. Ellis, Renewable Sustainable Energy Rev. 2010, 14, 1312; c) J. C. Thompson, B. B. He, Appl. Eng. Agric. 2006, 22, 261.
- 5 Oleoline, Quarterly Glycerine Market Report, https://www.oleoline.com/products/Quarterly-Glycerine-Market-Report-3.html (accessed: June 2020).
- 6a) J. N. Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem., Int. Ed. 2007, 46, 7164; b) F. Ullmann, in Wiley-VCH-Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2012, pp. 67–82.
- 7S. Carrettin, P. McMorn, P. Johnston, K. Griffin, G. J. Hutchings, Chem. Commun. 2002, 7, 696.
- 8Y. Shen, S. Zhang, H. Li, Y. Ren, H. Liu, Chemistry 2010, 16, 7368.
- 9a) S. Bagheri, N. M. Julkapli, W. A. Yehye, Renewable Sustainable Energy Rev. 2015, 41, 113; b) C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu, Chem. Soc. Rev. 2008, 37, 527.
- 10D. Liu, J. C. Liu, W. Cai, J. Ma, H. B. Yang, H. Xiao, J. Li, Y. Xiong, Y. Huang, B. Liu, Nat. Commun. 2019, 10, 1779.
- 11a) G. P. da Silva, M. Mack, J. Contiero, Biotechnol. Adv. 2009, 27, 30; b) S. Schünemann, F. Schüth, H. Tüysüz, Catal. Sci. Technol. 2017, 7, 5614; c) X. Wang, G. Wu, X. Zhang, D. Wang, J. Lan, J. Li, Catal. Lett. 2019, 149, 1046; d) Y. Zhou, Y. Shen, X. Luo, J. Catal. 2020, 381, 130.
- 12a) V. S. Bagotskii, Y. B. Vasil'ev, Electrochim. Acta. 1964, 2, 869; b) S. S. Beskorovainaya, A. Khazova, Y. B. Vasil'w, V. Bagotskii, Elektrokhimiya 1966, 2, 866.
- 13R. S. Gonçalves, W. E. Triaca, T. Rabockai, Anal. Lett. 2006, 18, 957.
- 14R. Ciriminna, G. Palmisano, C. D. Pina, M. Rossi, M. Pagliaro, Tetrahedron Lett. 2006, 47, 6993.
- 15Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal. 2012, 2, 759.
- 16T. J. P. H. Youngkook Kwon, M. T. M. Koper, Top. Catal. 2014, 56, 1272.
- 17a) R. G. Da Silva, S. Aquino Neto, K. B. Kokoh, A. R. De Andrade, J. Power Sources 2017, 351, 174; b) M. B. de Souza, R. A. Vicente, V. Y. Yukuhiro, V. M. T. Pires, W. Cheuquepán, J. L. Bott-Neto, J. Solla-Gullón, P. S. Fernández, ACS Catal. 2019, 9, 5104; c) M. B. C. de Souza, V. Y. Yukuhiro, R. A. Vicente, C. T. G. Vilela Menegaz Teixeira Pires, J. L. Bott-Neto, P. S. Fernández, ACS Catal. 2020, 10, 2131; d) Y. Holade, C. Morais, K. Servat, T. W. Napporn, K. B. Kokoh, ACS Catal. 2013, 3, 2403; e) Y. Zhou, Y. Shen, J. Xi, Appl. Catal., B 2019, 245, 604; f) Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun. 2019, 10, 5335.
- 18J. Zhao, W. Jing, T. Tan, X. Liu, Y. Kang, W. Wang, New J. Chem. 2020, 44, 4604.
- 19N. Y. Suzuki, P. V. B. Santiago, T. S. Galhardo, W. A. Carvalho, J. Souza-Garcia, C. A. Angelucci, J. Electroanal. Chem. 2016, 780, 391.
- 20Y. Tseng, D. Scott, Energies 2018, 11, 2259.
- 21M. Rasmussen, A. Serov, K. Artyushkova, D. Chen, T. C. Rose, P. Atanassov, J. M. Harris, S. D. Minteer, ChemElectroChem 2019, 6, 241.
- 22C. Jin, C. Sun, R. Dong, Z. Chen, J. Nanosci. Nanotechnol. 2012, 12, 324.
- 23a) C. Liu, M. Hirohara, T. Maekawa, R. Chang, T. Hayashi, C.-Y. Chiang, Appl. Catal., B 2019, 265, 118543; b) M. Hunsom, P. Saila, Renewable Energy 2015, 74, 227.
- 24Y. Kwon, K. J. P. Schouten, M. T. M. Koper, ChemCatChem 2011, 3, 1176.
- 25Z. Zhang, L. Xin, J. Qi, D. J. Chadderdon, K. Sun, K. M. Warsko, W. Li, Appl. Catal., B 2014, 147, 871.
- 26J. Bai, H. Huang, F. Li, Y. Zhao, P. Chen, P. Jin, S. Li, H.-C. Yao, J.-H. Zeng, Y. Chen, J. Mater. Chem. A 2019, 7, 21149.
- 27L. M. Palma, T. S. Almeida, C. Morais, T. W. Napporn, K. B. Kokoh, A. R. de Andrade, ChemElectroChem 2017, 4, 39.
- 28Y. Zhang, S.-X. Guo, X. Zhang, A. M. Bond, J. Zhang, Nano Today 2020, 31, 100835.
- 29V. L. Oliveira, C. Morais, K. Servat, T. W. Napporn, P. Olivi, K. B. Kokoh, G. Tremiliosi-Filho, Electrocatalysis 2015, 6, 447.
- 30C. Y. Wang, Z. Y. Yu, G. Li, Q. T. Song, G. Li, C. X. Luo, S. H. Yin, B. A. Lu, C. Xiao, B. B. Xu, Z. Y. Zhou, N. Tian, S. G. Sun, ChemElectroChem 2020, 7, 239.
- 31O. O. Fashedemi, H. A. Miller, A. Marchionni, F. Vizza, K. I. Ozoemena, J. Mater. Chem. A 2015, 3, 7145.
- 32L. Huang, J.-Y. Sun, S.-H. Cao, M. Zhan, Z.-R. Ni, H.-J. Sun, Z. Chen, Z.-Y. Zhou, E. G. Sorte, Y. J. Tong, S.-G. Sun, ACS Catal. 2016, 6, 7686.
- 33R. L. Arechederra, B. L. Treu, S. D. Minteer, J. Power Sources 2007, 173, 156.
- 34a) A. T. Marshall, Int. J. Hydrogen Energy 2008, 33, 4649; b) Z. F. Pan, R. Chen, L. An, Y. S. Li, J. Power Sources 2017, 365, 430.
- 35F. Yang, J. Ye, Q. Yuan, X. Yang, Z. Xie, F. Zhao, Z. Zhou, L. Gu, X. Wang, Adv. Funct. Mater. 2020, 30, 1908235.
- 36C. A. Martins, O. A. Ibrahim, P. Pei, E. Kjeang, Electrochim. Acta 2019, 305, 47.
- 37P. Sangkheaw, S. Therdthianwong, A. Therdthianwong, N. Wongyao, S. Yongprapat, Renew. Energ. 2020, 161, 395.
- 38a) G. Zhang, Q. Ji, K. Zhang, Y. Chen, Z. Li, H. Liu, J. Li, J. Qu, Nano Energy 2019, 59, 10; b) G. Zhang, J.-H. Li, Chin. J. Chem. Phys. 2018, 31, 517; c) M. S. E. Houache, R. Safari, U. O. Nwabara, T. Rafaïdeen, G. A. Botton, P. J. A. Kenis, S. Baranton, C. Coutanceau, E. A. Baranova, ACS Appl. Mater. Interfaces 2020, 3, 8725.
- 39M. S. E. Houache, K. Hughes, E. A. Baranova, Sustainable Energy Fuels 2019, 3, 1892.
- 40J. F. Gomes, F. B. Paula, L. H. Gasparotto, G. Tremiliosi-Filho, Electrochim. Acta 2012, 76, 88.
- 41V. Del Colle, L. M. S. Nunes, C. A. Angelucci, J. M. Feliu, G. Tremiliosi-Filho, Electrochim. Acta 2020, 346, 136187.
- 42B. Tam, M. Duca, A. Wang, M. Fan, S. Garbarino, D. Guay, ChemElectroChem 2018, 6, 1784.
- 43C. C. Lima, M. V. F. Rodrigues, A. F. M. Neto, C. R. Zanata, C. T. G. V. M. T. Pires, L. S. Costa, J. Solla-Gullón, P. S. Fernández, Appl. Catal., B 2020, 279, 119369.
- 44Y. Zhou, Y. Shen, J. Xi, X. Luo, ACS Appl. Mater. Interfaces 2019, 11, 28953.
- 45a) Y. Kwon, M. T. M. Koper, Anal. Chem. 2010, 82, 5420; b) J. F. Gomes, G. Tremiliosi-Filho, Electrocatalysis 2011, 2, 96; c) G. A. B. Mello, C. Buso-Rogero, E. Herrero, J. M. Feliu, J. Chem. Phys. 2019, 150, 041703.
- 46G. A. B. Mello, C. Buso-Rogero, E. Herrero, J. M. Feliu, J. Chem. Phys. 2019, 150.
- 47a) J. Qi, N. Benipal, C. Liang, W. Li, Appl. Catal., B 2016, 199, 494; b) M. M. S. Pupo, F. E. López-Suárez, A. Bueno-López, C. T. Meneses, K. I. B. Eguiluz, G. R. Salazar-Banda, J. Appl. Electrochem. 2014, 45, 139; c) M. S. Ahmad, C. K. Cheng, R. Kumar, S. Singh, K. A. Saeed, H. R. Ong, H. Abdullah, M. R. Khan, Electroanalysis 2020, 32, 1139.
- 48N. Benipal, J. Qi, Q. Liu, W. Li, Appl. Catal., B 2017, 210, 121.
- 49M. S. Ahmad, S. Singh, C. K. Cheng, H. R. Ong, H. Abdullah, M. R. Khan, S. Wongsakulphasatch, Catal. Commun. 2020, 139, 105964.
- 50a) V. L. Oliveira, C. Morais, K. Servat, T. W. Napporn, G. Tremiliosi-Filho, K. B. Kokoh, J. Electroanal. Chem. 2013, 703, 56; b) N. R. Stradiotto, K. E. Toghill, L. Xiao, A. Moshar, R. G. Compton, Electroanal 2009, 21, 2627.
- 51A. Iriondo, J. F. Cambra, V. L. Barrio, M. B. Guemez, P. L. Arias, M. C. Sanchez-Sanchez, R. M. Navarro, J. L. G. Fierro, Appl. Catal., B 2011, 106, 83.
- 52D. Liang, J. Gao, J. H. Wang, P. Chen, Y. F. Wei, Z. Y. Hou, Catal. Commun. 2011, 12, 1059.
- 53J. Dou, B. W. Zhang, H. Liu, J. D. Hong, S. M. Yin, Y. Z. Huang, R. Xu, Appl. Catal., B 2016, 180, 78.
- 54a) Y. Xiao, J. Greeley, A. Varma, Z. J. Zhao, G. M. Xiao, AIChE J. 2017, 63, 705; b) W. B. Hu, D. Knight, B. Lowry, A. Varma, Ind. Eng. Chem. Res. 2010, 49, 10876.
- 55M. M. S. Pupo, F. E. Lopez-Suarez, A. N. Bueno-Lopez, C. T. Meneses, K. I. B. Eguiluz, G. R. Salazar-Banda, J. Appl. Electrochem. 2014, 45, 139.
- 56R. M. Castagna, J. M. Sieben, A. E. Alvarez, M. M. E. Duarte, Int. J. Hydrogen Energy 2019, 44, 5970.
- 57M. S. E. Houache, K. Hughes, A. Ahmed, R. Safari, H. S. Liu, G. A. Botton, E. A. Baranova, ACS Sustainable Chem. Eng. 2019, 7, 14425.
- 58C. Y. Wang, Z. Y. Yu, G. Li, Q. T. Song, G. Li, C. X. Luo, S. H. Yin, B. A. Lu, C. Xiao, B. B. Xu, Z. Y. Zhou, N. Tian, S. G. Sun, Chemelectrochem 2020, 7, 239.
- 59M. Simoes, S. Baranton, C. Coutanceau, Appl. Catal., B 2011, 110, 40.
- 60a) S. Lee, H. J. Kim, E. J. Lim, Y. Kim, Y. Noh, G. W. Huber, W. B. Kim, Green Chem. 2016, 18, 2877; b) S. Feng, J. Yi, H. Miura, N. Nakatani, M. Hada, T. Shishido, ACS Catal. 2020, 10, 6071.
- 61A. C. Garcia, Y. Y. Birdja, G. Tremiliosi, M. T. M. Koper, J. Catal. 2017, 346, 117.
- 62M. B. C. D. Souza, R. A. Vicente, V. Y. Yukuhiro, C. O. T. G. V. M. T. Pires, W. Cheuquepán, J. L. Bott-Neto, J. Solla-Gullón, P. S. Fernández, ACS Catal. 2019, 9, 5104.
- 63B. D. Ferreira, L. M. Alencar, G. C. da Silva, G. Maia, C. A. Martins, Electrocatalysis 2018, 9, 314.
- 64D. Lee, Y. Kim, Y. Kwon, J. Lee, T.-W. Kim, Y. Noh, W. B. Kim, M. H. Seo, K. Kim, H. J. Kim, Appl. Catal., B 2019, 245, 555.
- 65J. L. Bott-Neto, T. S. Martins, S. A. S. Machado, E. A. Ticianelli, ACS Appl. Mater. Interfaces 2019, 11, 30810.
- 66a) M. S. E. Houache, E. Cossar, S. Ntais, E. A. Baranova, J. Power Sources 2018, 375, 310; b) M. E. Ghaith, G. A. El-Nagar, M. G. Abd El-Moghny, H. H. Alalawy, M. E. El-Shakre, M. S. El-Deab, Int. J. Hydrogen Energy 2020, 45, 9658.
- 67M. Nacef, M. L. Chelaghmia, O. Khelifi, M. Pontié, M. Djelaibia, R. Guerfa, V. Bertagna, C. Vautrin-Ul, A. Fares, A. M. Affoune, Int. J. Hydrogen Energy 2020.
- 68P. Sivasakthi, M. V. Sangaranarayanan, New. J. Chem 2019, 43, 8352.
- 69a) G. Wang, Z. Wen, Nanoscale 2018, 10, 21087; b) B. Habibi, N. Delnavaz, RSC Adv. 2016, 6, 31797.
- 70J. Du, A. Xie, S. Zhu, Z. Xiong, X. Yu, F. Yang, Y. Tao, S. Luo, New J. Chem 2019, 43, 10366.
- 71M. S. E. Houache, K. Hughes, R. Safari, G. A. Botton, E. A. Baranova, ACS Appl. Mater. Interfaces 2020, 12, 15095.
- 72Y. Rao, X. Cao, C. Li, L. Xiao, Sep. Purif. Technol. 2019, 220, 328.
- 73S. Zhu, A. Xie, X. Tao, J. Zhang, B. Wei, Z. Liu, Y. Tao, S. Luo, J. Electroanal. Chem. 2020, 857, 113748.
- 74X. Han, H. Sheng, C. Yu, T. W. Walker, G. W. Huber, J. Qiu, S. Jin, ACS Catal. 2020, 10, 6741.
- 75a) M. Ayoub, A. Z. Abdullah, Renewable Sustainable Energy Rev. 2012, 16, 2671; b) M. Hajek, F. Skopal, Bioresour. Technol. 2010, 101, 3242.
- 76E. Antolini, Catalysts 2019, 9, 980.
- 77a) D. Feng, Y. Dong, L. Zhang, X. Ge, W. Zhang, S. Dai, Z. A. Qiao, Angew. Chem., Int. Ed. 2020, 59, 19503; b) G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, X. Liu, X. Lin, S. Sun, H.-J. Qiu, Appl. Catal., B 2020, 268, 118431; c) X. Zhao, Z. Xue, W. Chen, Y. Wang, T. Mu, ChemSusChem 2020, 13, 2038.
- 78A. B. Petersen, H. C. Wulf, R. Gniadecki, B. Gajkowska, Mutat. Res. 2004, 560, 173.
- 79I. E. K. Bach-Cuc Nguyen, J. Invest. Dermatol. 2003, 120, 655.
- 80A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Green Chem. 2008, 10, 13.
- 81N. Cohen-Hadar, S. Lagziel-Simis, Y. Wine, F. Frolow, A. Freeman, Biotechnol. Bioeng. 2011, 108, 1.
- 82E. M. P. Maurice, B. Burg, K. M. Bohren, K. H. Gabbay, Proc. Natl. Acad. Sci. 1999, 96, 6517.
- 83P. M. Bizot, B. R. Bailey, P. D. Hicks, (Nico Chemical Company), US5750037, 1998.
- 84M. M. G. Caselli, C. A. Gandol, M. Allegretti, S. Fiorentino, L. Pellegrini, G. Melillo, R. Bertini, W. Sabbatini, R. Anacardio, G. Clavenna, G. Sciortino, A. Teti, J. Bone Miner. Res. 1997, 12, 972.
- 85S. O. Illman, J. Math. Sci. 2001, 105, 1843.
10.1023/A:1011323915468 Google Scholar
- 86M. P. Rosaria Ciriminna, Adv. Synth. Catal. 2003, 345, 383.
- 87L. Xin, Z. Zhang, Z. Wang, W. Li, ChemCatChem 2012, 4, 1105.
- 88S. Shahabi, F. Najafi, A. Majdabadi, T. Hooshmand, M. Haghbin Nazarpak, B. Karimi, S. M. Fatemi, Sci. World J. 2014, 2014, 420616.
- 89O. M. Koivistoinen, J. Kuivanen, D. Barth, H. Turkia, J. P. Pitkanen, M. Penttila, P. Richard, Microb. Cell. Fact. 2013, 12, 16.
- 90Y. Z. Wei Qin, Li Zhenyu, Y. Dai, J. Chem. Eng. Data 2003, 48, 430.
- 91S.-J. Cho, T. Nguyen, J.-H. Boo, J. Nanosci. Nanotechnol. 2011, 11, 5328.
- 92T. K. Tomoko Kayashima, Biochim. Biophys. Acta 2002, 1, 1.
- 93Y. Xiong, J. Dong, Z. Q. Huang, P. Xin, W. Chen, Y. Wang, Z. Li, Z. Jin, W. Xing, Z. Zhuang, J. Ye, X. Wei, R. Cao, L. Gu, S. Sun, L. Zhuang, X. Chen, H. Yang, C. Chen, Q. Peng, C. R. Chang, D. Wang, Y. Li, Nat. Nanotechnol. 2020, 5, 390.
- 94A. Albert, J. Chem. Soc. 1947.
- 95Y. Kim, H. W. Kim, S. Lee, J. Han, D. Lee, J. R. Kim, T. W. Kim, C. U. Kim, S. Y. Jeong, H. J. Chae, B. S. Kim, H. Chang, W. B. Kim, S. M. Choi, H. J. Kim, ChemCatChem 2017, 9, 1683.
- 96M. R. Rizk, M. G. Abd El-Moghny, G. A. El-Nagar, A. A. Mazhar, M. S. El-Deab, ChemElectroChem 2020, 7, 951.