Fabrication of the Oxygen Vacancy Amorphous MnO2/Carbon Nanotube as Cathode for Advanced Aqueous Zinc-Ion Batteries
Corresponding Author
Hao Tong
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorTingting Li
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorJiang Liu
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorDaxiong Gong
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorJinpan Xiao
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Laifa Shen
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorBing Ding
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorXiaogang Zhang
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Hao Tong
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorTingting Li
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorJiang Liu
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorDaxiong Gong
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorJinpan Xiao
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorCorresponding Author
Laifa Shen
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorBing Ding
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorXiaogang Zhang
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Search for more papers by this authorAbstract
The serious limitations of MnO2 are poor electrical conductivity and low utilization rate of electrochemical active area. These problems have seriously limited the application of MnO2 aqueous zinc-ion batteries (AZIBs). Herein, preparing MnO2 uniformly loaded on carbon nanotubes with good electrical conductivity can greatly improve the poor electrical conductivity of MnO2. Moreover, by introducing oxygen vacancy, the surface capacitance, the reaction kinetics, and the electrochemical performance of MnO2 is increased. The specific capacity of the Vo-MnO2/CNT material is 314 mAh g−1, at 0.2 A g−1, and capacity retention of 81% is achieved after 1000 cycles. In particular, the prepared device presents a distinct energy density of 416.2 Wh kg−1. As a result, the capacity as well as the cycle stability is effectively improved compared with the original MnO2.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1L. Chen, Q. An, L. Mai, Adv. Mater. Interfaces 2019, 6, 1900387.
- 2Z. Yang, J. Zhang, M. C. Kintnermeyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.
- 3P. Yu, Y. Zeng, H. Zhang, M. Yu, Y. Tong, X. Lu, Small 2019, 15, 1804760.
- 4J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, J. Power Sources 2006, 158, 765.
- 5G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480.
- 6J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77 3865.
- 7Y. Cai, R. Chua, S. Z. Huang, H. Ren, M. Srinivasan, Chem. Eng. J. 2020, 396, 125221.
- 8M. Toupin, T. B. And, D. Belanger, Chem. Mater. 2004, 16, 3184.
- 9J. Wang, J. Wang, H. Liu, C. Wei, F. Kang, J. Mater. Chem. 2019, 7, 13727.
- 10D. Xu, B. Li, C. Wei, Y.-B. He, H. Du, X. Chu, X. Qin, Q.-H. Yang, F. Kang, Electrochim. Acta 2014, 133, 254.
- 11L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, Y. Zhao, Nano Lett. 2010, 10, 4750.
- 12V. Petkov, P. N. Trikalitis, E. S. Bozin, S. J. L. Billinge, T. Vogt, M. G. Kanatzidis, J. Am. Chem. Soc. 2002, 124, 10157.
- 13D. Su, G. Wang, ACS Nano 2013, 7, 11218.
- 14H. J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 1977, 16, 2704.
- 15F. Herren, P. Fischer, A. Ludi, W. Haelg, Inorg. Chem. 1980, 11, 956.
- 16R. Trocoli, F. La Mantia, ChemSusChem 2015, 8, 481.
- 17Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Chem. Soc. Rev. 2018, 47, 3100.
- 18H. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 2017, 16, 454.
- 19A. V. Murugan, T. Muraliganth, A. Manthiram, J. Phys. Chem. C 2008, 112, 14665.
- 20J. P. T. Guisao, A. J. F. Romero, Electrochim. Acta 2015, 176, 1447.
- 21J. Lee, J. B. Ju, W. I. Cho, B. W. Cho, S. H. Oh, Electrochim. Acta 2013, 112, 138.
- 22M. Chigane, M. Ishikawa, M. Izaki, J. Electrochem. Soc. 2001, 148, D96.
- 23H. Xia, M. O. Lai, L. Lu, J. Mater. Chem. 2010, 20, 6896.
- 24K. Kaasbjerg, T. Low, A. Jauho, Physics 2019, 100, 115409.
- 25M. A. Khan, M. Erementchouk, J. Hendrickson, M. N. Leuenberger, Phys. Rev. B 2017, 95, 245435.
- 26Y. Zhao, Q. Fang, X. Zhu, L. Xue, M. Ni, C. Qiu, H. Huang, S. Sun, S. Li, H. Xia, J. Mater. Chem. A 2020, 8, 8969.
- 27T. Xiong, Z. G. Yu, H. Wu, Y. Du, Q. Xie, J. Chen, Adv. Energy Mater. 2019, 9, 1803815.
- 28J. Chen, D. X. Yan, Z. Xu, X. Chen, X. Chen, W. Xu, H. Jia, J. Chen, Environ. Sci. Technol. 2018, 52, 4728.
- 29C. Dong, Z. Qu, X. Jiang, Y. Ren, J. Hazard. Mater. 2020, 391, 122181.
- 30N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 2016, 138, 12894.
- 31H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai, X. Zhang, M. Yu, Y. Tong, X. Lu, Energy Storage Mater. 2019, 21, 154.
- 32Z. You, H. Liu, J. Wang, L. Ren, J.-G. Wang, Appl. Surf. Sci. 2020, 514, 145949.
- 33J. Wang, J.-G. Wang, H. Liu, Z. You, C. Wei, F. Kang, J. Power Sources 2019, 438, 226951.
- 34J. Wang, J.-G. Wang, X. Qin, Y. Wang, Z. You, H. Liu, M. Shao, ACS Appl. Mater. Interfaces 2020, 12, 34949.
- 35Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, Adv. Mater. 2017, 29, 1700274.
- 36Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi, J. Liu, Nano Lett. 2012, 12, 4206.
- 37Y. Zhang, S. Deng, M. Luo, G. Pan, Y. Zeng, X. Lu, C. Ai, Q. Liu, Q. Xiong, X. Wang, X. Xia, J. Tu, Small 2019, 15, 1905452.
- 38B. Zhang, Y. Liu, X. Wu, Y. Yang, Z. Chang, Z. Wen, Y. Wu, Chem. Commun. 2014, 50, 1209.
- 39V. Soundharrajan, B. Sambandam, S. Kim, S. Islam, J. Jo, S. Kim, V. Mathew, Y-k. Sun, J. Kim, Energy Storage Mater. 2019, 28, 407.