Carbon-Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO2 Hydrogenation to Methanol
Haichuan Ye
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorCorresponding Author
Wei Na
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorWengui Gao
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorHua Wang
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorHaichuan Ye
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorCorresponding Author
Wei Na
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorWengui Gao
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorHua Wang
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093 China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 China
Search for more papers by this authorAbstract
CO2 hydrogenation to methanol is a prospective approach to alleviate both global warming and energy problems. CuO/ZnO is proven to be an efficient catalyst, in which ZnO carriers prepared by different methods directly affect the catalytic activity. Herein, a novel method is used to apply a zeolite imidazolate framework-8 (ZIF-8)-derived ZnO to the carrier of copper-based catalyst. In the process of thermal transformation from ZIF-8 to ZnO, the carrier ZnO-400 is specially modified by carbon inherited from ZIF-8, and the corresponding CuO/ZnO-400 catalyst still has special carbon modification, which is confirmed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Meanwhile, the pyrolysis temperature of ZIF-8 affects the surface oxygen defects of ZnO and the CuO/ZnO-400 catalyst has a large oxygen vacancy concentration, which is proven by X-ray diffraction (XRD) and XPS. Consequently, the CuO/ZnO-400 catalyst achieves the best CO2 conversion and methanol selectivity due to more oxygen vacancies and carbon modification.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000194-sup-0001-SuppData-S1.docx2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Banerjee, G. R. Dick, T. Yoshino, M. W. Kanan, Nature 2016, 531, 215.
- 2P. R. Yaashikaa, P. Senthil Kumar, S. J. Varjani, A. Saravanan, J. CO2 Util. 2019, 33, 131.
- 3Q. D. Truong, H. T. Hoa, D. N. Vo, T. S. Le, New J. Chem. 2017, 41, 5660.
- 4X. Zhen, Y. Wang, Renewable Sustainable Energy Rev. 2015, 52, 477.
- 5R. Thimmappa, S. Aralekallu, M. C. Devendrachari, A. R. Kottaichamy, Z. M. Bhat, S. P. Shafi, K. S. Lokesh, M. O. Thotiyl, Adv. Mater. Interfaces 2017, 4, 1700321.
- 6K. Räuchle, L. Plass, H. J. Wernicke, M. Bertau, Energy Technol. 2016, 4, 193.
- 7H. Lei, R. Nie, G. Wu, Z. Hou, Fuel 2015, 154, 161.
- 8F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S. C. Tsang, Angew. Chem. Int. Ed. 2011, 50, 2162.
- 9G. R. Li, T. Hu, G. L. Pan, T. Y. Yan, X. P. Gao, H. Y. Zhu, J. Phys. Chem. C 2008, 112, 11859.
- 10A. L. Valant, C. Comminges, C. Tisseraud, C. Canaff, L. Pinard, Y. Pouilloux, J. Catal. 2015, 324, 41.
- 11T. Witoon, T. Numpilai, T. Phongamwong, W. Donphai, C. Boonyuen, C. Warakulwit, M. Chareonpanich, J. Limtrakul, Chem. Eng. J. 2018, 334, 1781.
- 12M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, Catalysts 2019, 9, 275.
- 13Y. J. Fan, S. F. Wu, J. CO2 Util. 2016, 16, 150.
- 14S. Liu, J. Wang, J. Yu, RSC Adv. 2016, 6, 59998.
- 15L. Zhang, Q. Liang, P. Yang, Y. Huang, Y. Liu, H. Yang, J. Yan, New J. Chem. 2019, 43, 2990.
- 16Q. Yang, Q. Xu, H. L. Jiang, Chem. Soc. Rev. 2017, 46, 4774.
- 17J. Rong, J. Xu, F. Qiu, Y. Zhu, Y. Fang, J. Xu, Adv. Mater. Interfaces 2019, 6, 1900502.
- 18Z. Lei, Y. Xue, W. Chen, W. Qiu, Y. Zhang, S. Horike, L. Tang, Adv. Energy Mater. 2018, 8, 1.
- 19M. Liu, W. Zheng, S. Ran, S. T. Boles, L. Yoon, S. Lee, Adv. Mater. Interfaces 2018, 5, 1800849.
- 20S. Dang, Q. L. Zhu, Q. Xu, Nat. Rev. Mater. 2017, 3, 1.
- 21B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M. Choi, O. M. Yaghi, G. A. Somorjai, Nano Lett. 2016, 16, 7645.
- 22Y. Yin, B. Hu, X. Li, X. Zhou, X. Hong, G. Liu, Appl. Catal. B Environ. 2018, 234, 143.
- 23W. Zheng, R. Ding, K. Yang, Y. Dai, X. Yan, G. He, Sep. Purif. Technol. 2019, 214, 111.
- 24X. Hu, X. Liu, X. Zhang, H. Chai, Y. Huang, Biosens. Bioelectron. 2018, 105, 65.
- 25F. Yu, X. Xu, H. Peng, H. Yu, Y. Dai, W. Liu, J. Ying, Q. Sun, X. Wang, Appl. Catal. A Gen. 2015, 507, 109.
- 26G. Jia, L. Liu, L. Zhang, D. Zhang, Y. Wang, X. Cui, W. Zheng, Appl. Surf. Sci. 2018, 448, 254.
- 27Y. H. Zhang, B. B. Jiu, F. L. Gong, K. Lu, N. Jiang, H. L. Zhang, J. L. Chen, J. Phys. Chem. Solids 2018, 116, 126.
- 28Y. Li, W. Na, H. Wang, W. Gao, J. Porous Mater. 2017, 24, 591.
- 29C. Jiao, Z. Wang, X. Zhao, H. Wang, J. Wang, R. Yu, D. Wang, Angew. Chem. Int. Ed. 2019, 58, 996.
- 30Q. Ma, M. Geng, J. Zhang, X. Zhang, T. S. Zhao, ChemistrySelect 2019, 4, 78.
- 31R. M. Palomino, P. J. Ramírez, Z. Liu, R. Hamlyn, I. Waluyo, M. Mahapatra, I. Orozco, A. Hunt, J. P. Simonovis, S. D. Senanayake, J. A. Rodriguez, J. Phys. Chem. B 2018, 122, 794.
- 32N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C. J. Liu, Appl. Catal. B Environ. 2017, 218, 488.
- 33C. Cai, Y. Zou, C. Xiang, H. Chu, S. Qiu, Q. Sui, F. Xu, L. Sun, A. Shah, Appl. Surf. Sci. 2018, 440, 47.
- 34J. Díez-Ramírez, P. Sánchez, A. Rodríguez-Gómez, J. L. Valverde, F. Dorado, Ind. Eng. Chem. Res. 2016, 55, 3556.
- 35Q. Yang, C. C. Yang, C. H. Lin, H. L. Jiang, Angew. Chem. Int. Ed. 2019, 58, 3511.
- 36S. Tada, F. Watanabe, K. Kiyota, N. Shimoda, R. Hayashi, M. Takahashi, A. Nariyuki, A. Igarashi, S. Satokawa, J. Catal. 2017, 351, 107.
- 37Z. Liang, P. Gao, Z. Tang, M. Lv, Y. Sun, J. CO2 Util. 2017, 21, 191.
- 38X. Jiang, X. Wang, X. Nie, N. Koizumi, X. Guo, C. Song, Catal. Today 2018, 316, 62.
- 39C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux, A. L. Valant, J. Catal. 2015, 330, 533.
- 40Y. Zhang, L. Zhong, H. Wang, P. Gao, X. Li, S. Xiao, G. Ding, W. Wei, Y. Sun, J. CO2 Util. 2016, 15, 72.
- 41N. Kanjanasoontorn, T. Permsirivanich, T. Numpilai, T. Witoon, N. Chanlek, M. Niamlaem, C. Warakulwit, J. Limtrakul, Catal. Lett. 2016, 146, 1943.
- 42T. Witoon, N. Kachaban, W. Donphai, P. Kidkhunthod, K. Faungnawakij, M. Chareonpanich, J. Limtrakul, Energy Convers. Manag. 2016, 118, 21.
- 43M. Zhang, J. Zhang, Y. Wu, J. Pan, Q. Zhang, Y. Tan, Y. Han, Appl. Catal. B Environ. 2019, 244, 427.
- 44E. M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J. Phys. Chem. C 2013, 117, 17666.
- 45M. Z. Ramli, S. S. A. Syed-Hassan, A. Hadi, Fuel Process. Technol. 2018, 169, 191.
- 46Y. Sun, L. Chen, Y. Bao, G. Wang, Y. Zhang, M. Fu, J. Wu, D. Ye, Catal. Today 2018, 307, 212.
- 47H. Lei, Z. Hou, J. Xie, Fuel 2016, 164, 191.
- 48M. D. Rhodes, A. T. Bell, J. Catal. 2005, 233, 198.
- 49O. Martin, C. Mondelli, A. Cervellino, D. Ferri, D. Curulla-Ferré, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2016, 55, 11031.
- 50S. Kattel, B. Yan, J. G. Chen, P. Liu, J. Catal. 2016, 343, 115.
- 51Y. Wang, S. Kattel, W. Gao, K. Li, P. Liu, J. Chen, H. Wang, Nat. Commun. 2019, 10, 1.
- 52O. Tursunov, L. Kustov, A. Kustov, Oil Gas Sci. Technol. 2017, 72, 30.
10.2516/ogst/2017027 Google Scholar
- 53R. Guil-López, N. Mota, J. Llorente, E. Millán, B. Pawelec, J. L. G. Fierro, R. M. Navarro, Materials 2019, 12, 3902.
- 54W. Wang, Z. Qu, L. Song, Q. Fu, J. Energy Chem. 2020, 40, 22.
- 55N. Pasupulety, H. Driss, Y. A. Alhamed, A. A. Alzahrani, M. A. Daous, L. Petrov, Appl. Catal. A Gen. 2015, 504, 308.
- 56K. Chen, H. Fang, S. Wu, X. Liu, J. Zheng, S. Zhou, X. Duan, Y. Zhuang, S. C. E. Tsang, Y. Yuan, Appl. Catal. B 2019, 251, 119.
- 57S. R. Venna, J. B. Jasinski, M. Carreon, J. Am. Chem. Soc. 2010, 132, 1.
- 58Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng, Appl. Catal. B 2011, 101, 431–440.