Waste-Derived Heteroatom-Doped Activated Carbon/Manganese Dioxide Trio-Composite for Supercapacitor Applications
Pravin H. Wadekar
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorRahul V. Khose
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorDattatray A. Pethsangave
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorCorresponding Author
Surajit Some
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorPravin H. Wadekar
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorRahul V. Khose
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorDattatray A. Pethsangave
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorCorresponding Author
Surajit Some
Department of Dyestuff Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
Search for more papers by this authorAbstract
The utilization of biological-waste materials to synthesize heteroatom-doped activated carbon (AC), followed by metal oxide functionalization for high-performance supercapacitors is described. Herein, easily available and cheap biowaste, i.e., cow dung (CD), and low priced-nontoxic waste melamine sponge (MS) are consumed to produce nitrogen-doped AC followed by functionalization with economically inexpensive manganese dioxide (MnO2), that is utilized to provide an efficient energy-storage material. The use of CD, MS, and MnO2 materials furnishes the process with sustainability, cost-effectiveness, and safe components for the doping of heteroatoms and metal oxide on the carbon framework for energy-storage applications. The subsequent material exhibits maximum specific capacitance, i.e., 424 F g−1, at a current density of 1 A g−1, which relates to maximum power as well as the energy density of 1817 W kg−1 and 47.7 Wh kg−1, respectively. The resultant material shows high-performance specific capacitance and excellent cyclic stability for supercapacitor applications. This modest process of the direct production of N-doped AC followed by MnO2 functionalization is a simple, economical, large production of a nanomaterial prototype for different applications including supercapacitor applications.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901402-sup-0001-SuppData-S1.docx3.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Fang, J. H. Kim, M. S. Kim, J. S. Yu, Acc. Chem. Res. 2012, 46, 1397.
- 2E. Frackowiak, F. Beguin, Carbon 2001, 39, 937.
- 3M. Srivastava, M. Kumar, R. Singh, U. Agrawal, M. Garg, J. Sci. Ind. Res. 2009, 68, 93.
- 4D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127.
- 5S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nano Energy 2012, 1, 195.
- 6C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, Adv. Mater. 2009, 21, 4793.
- 7P. H. Wadekar, D. J. Ahirrao, R. V. Khose, D. A. Pethsangave, N. Jha, S. Some, ChemistrySelect 2018, 3, 5630.
- 8C. Kim, K. S. Yang, Appl. Phys. Lett. 2003, 83, 1216.
- 9M. Arulepp, J. Leis, M. Lätt, F. Miller, K. Rumma, E. Lust, A. F. Burke, J. Power Sources 2006, 162, 1460.
- 10M. E. Plonska-Brzezinska, L. Echegoyen, J. Mater. Chem. A. Mater. 2013, 1, 13703.
- 11Y. Huang, G. Zhao, Holzforschung, 2015, 70, 195.
- 12J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073.
- 13B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 813.
- 14B. Xu, S. Hou, G. Cao, F. Wu, Y. Yang, J. Mater. Chem. 2012, 22, 19088.
- 15X. Li, C. Han, X. Chen, C. Shi, Microporous Mesoporous Mater. 2010, 131, 303.
- 16X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S. Z. Qiao, G. Q. Lu, Bioresour. Technol. 2011, 102, 1118.
- 17H. Demiral, I. Demiral, Surf. Interface Anal. 2008, 40, 612.
- 18L. Wei, M. Sevilla, A. B. Fuertes, R. Mokaya, G. Yushin, Adv. Energy Mater. 2011, 1, 356.
- 19M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 2013, 6, 1249.
- 20C. Falco, J. M. Sieben, N. Brun, M. Sevilla, T. van der Mauelen, E. Morallón, D. Cazorla-Amorós, M. M. Titirici, ChemSusChem 2013, 6, 374.
- 21C. Huang, T. Sun, D. Hulicova-Jurcakova, ChemSusChem 2013, 6, 2330.
- 22L. Wang, G. Mu, C. Tian, L. Sun, W. Zhou, P. Yu, J. Yin, H. Fu, ChemSusChem 2013, 6, 880.
- 23A. Avinash, A. Murugesan, Sci. Rep. 2017, 7, 9526.
- 24Y. Wang, H. Xuan, G. Lin, F. Wang, Z. Chen, X. Dong, J. Power Sources 2016, 319, 262.
- 25D. S. Jeong, J. M. Yun, K. H. Kim, RSC Adv. 2017, 7, 44735.
- 26J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, Adv. Funct. Mater. 2013, 23, 2322.
- 27L. Zhao, L. Z. Fan, M. Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 5202.
- 28B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Energy Environ. Sci. 2016, 9, 102.
- 29H. Li, X. Zhang, R. Ding, L. Qi, H. Wang, Electrochim. Acta. 2013, 108, 497.
- 30T. Zhu, J. Zhou, Z. Li, S. Li, W. Si, S. Zhuo, J. Mater. Chem. A 2014, 2, 12545.
- 31T. Zhou, H. Wang, S. Ji, V. Linkov, R. Wang, J. Power Sources 2014, 248, 427.
- 32X. Zhao, J. Zhu, L. Liang, C. Li, C. Liu, J. Liao, W. Xing, Appl. Catal. B 2014, 154–155, 177.
- 33H. Yang, H. Li, H. Wang, S. Ji, J. Key, R. Wang, J. Electrochem. Soc. 2014, 161, F795.
- 34J. Guo, J. Wang, S. Zhang, X. Ma, Z. Qiu, X. Peng, J. Ying, Y. Wang, G. Wu, New J. Chem. 2017, 41, 90.
- 35Y. Zhang, Q. Zhang, R. Zhang, S. Liu, Y. Zhou, New J. Chem. 2019, 43, 6343.
- 36R. V. Khose, D. A. Pethsangave, P. H. Wadekar, A. K. Ray, S. Some, Carbon, 2018, 139, 205.
- 37T. Brousse, P. L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Belangér, P. Simon, J. Power Sources 2007, 173, 633.
- 38L. Li, R. Li, S. Gai, S. Ding, F. He, M. Zhang, P. Yang, Chem. Eur. J. 2015, 21, 7119.
- 39J. W. Wang, Y. Chen, B. Z. Chen, J. Electrochem. Soc. 2015, 162, A1654.
- 40J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angew. Chem., Int. Ed. 2013, 52, 1664.
- 41D. Deng, B. S. Kim, M. Gopiramana, I. S. Kim, RSC Adv. 2015, 5, 81492.
- 42E. Frackowiak, Phys. Chem. Chem. Phys. 2007, 9, 1774.
- 43D. Bhattacharjya, J. S. Yu, J. Power Sources 2001, 262, 224.
- 44T. Purkait, G. Singh, M. Singh, D. Kumar, R. S. Dey, Sci. Rep. 2017, 7, 15239.
- 45X. Chen, K. Wu, B. Gao, Q. Xiao, J. Kong, Q. Xiong, X. Peng, X. Zhang, J. Fu, Waste Biomass Valorization 2016, 7, 551.
- 46A. Jain, S. K. Tripathi, J. Energy Storage 2015, 4, 121.
- 47P. Simon, Y. Gogotsi, Nat. mater. 2008, 7, 845.
- 48R. Choudhary, S. Patra, R. Madhuri, P. K. Sharma, ACS Sustainable Chem. Eng. 2017, 5, 9735.
- 49K. Sudhakar, R. Ananthakrishnan, A. Goyal, H. K. Darji, Int. J. Renew. Energy Dev. 2013, 2, 31.
10.14710/ijred.2.1.31-34 Google Scholar
- 50Z. Zhang, H. Li, Y. Yang, J. Key, S. Ji, Y. Ma, H. Wang, R. Wang, RSC Adv. 2015, 5, 27112.
- 51D. Lu, Z. Wang, J. Liao, Y. Leng, Z. Ding, G. Diao, H. Wang, P. Zhou, H. Li, Int. J. Electrochem. Sci. 2018, 13, 2154.
- 52Y. Feng, M. Cao, L. Yang, X. F. Zhang, Y. Wang, D. Yub, X. Gu, J. Yao, J. Electroanal. Chem. 2018, 823, 633.
- 53R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li, S. Xiong, J. Mater. Chem. A 2018, 6, 17730.
- 54W. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, Z. Guo, Electrochim. Acta 2019, 296, 907.
- 55Y. Luan, Y. Huang, L. Wang, M. Li, R. Wang, B. Jiang, J. Electroanal. Chem. 2016, 763, 90.
- 56L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan, S. H. Yu, Adv. Mater. 2013, 25, 4746.
- 57K. Ghosh, C. Y. Yue, M. M. Sk, R. K. Jena, ACS Appl. Mater. Interfaces 2017, 9, 15350.
- 58P. H. Wadekar, R. V. Khose, D. A. Pethsangave, S. Some, ChemSusChem 2019, 12, 3326.
- 59D. Yadav, L. Barbora, L. Rangan, P. Mahanta, Environ. Prog. Sustain Energy 2016, 35, 1247.
- 60W. Liu, H. Jiang, Y. Ru, X. Zhang, J. Qiao, ACS Appl. Mater. Interfaces 2018, 10, 24776.
- 61J. Yan, E. Khoo, A. Sumboja, P. S. Lee, ACS Nano 2010, 4, 4247.
- 62B. Zheng, C. Gao, New Carbon Mater. 2016, 31, 315.
- 63X. Li, Z. Wang, L. Guo, D. Han, B. Li, Z. Gong, Electrochim. Acta. 2018, 265, 71.
- 64F. Barzegar, D. Y. Momodu, O. O. Fashedemi, A. Bello, J. K. Dangbegnon, N. Manyala, RSC Adv. 2015, 5, 107482.