A New Finding on the Enhancement of the Ability of Polysulfide Adsorption of V2O5 by Doping Tungsten in Lithium–Sulfur Batteries
Corresponding Author
Feng Gao
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXinxiu Yan
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXuan Li
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYingjun Qiao
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHuimin Shang
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYanhua Zhang
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Weifeng Fan
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
Search for more papers by this authorCorresponding Author
Feng Gao
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXinxiu Yan
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXuan Li
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYingjun Qiao
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHuimin Shang
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYanhua Zhang
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Weifeng Fan
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 P. R. China
Search for more papers by this authorAbstract
Lithium–sulfur batteries are considered to be the most commercially promising lithium metal secondary batteries due to their high specific capacity. However, the shuttle effect of lithium polysulfide (LiPS) in the electrolyte seriously hinders the development of lithium–sulfur batteries. W-doped V2O5 (W-V2O5) is prepared by a hydrothermal method, which greatly improves the LiPS adsorption ability of V2O5. The W-V2O5 powder can discolor the LiPS solution in 1 min. Then, W-V2O5 is combined with a graphene/carbon nanotube composite (G/CNT) with good conductivity to modify the separator. As a result, the W-V2O5-G/CNT-coated separator allows the sulfur cathode to reach a high initial discharge capacity of 1200 mAh g−1 at 0.2 C and a reversible capacity of 815 mAh g−1 after 200 cycles at 0.5 C, and leads to an excellent rate ability (up to 2 C rate) and a high coulombic efficiency of 99.5%. This provides a new direction for designing efficient LiPS catalysts.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) M. Armand, J. M. Tarascon, Nature 2008, 451, 652; b) V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243; c) Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.
- 2a) J. M. Tarascon, M. Armand, Nature 2001, 414, 359; b) A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751; c) A. Manthiram, Y. Fu, Y.-S. Su, Acc. Chem. Res. 2013, 46, 1125; d) Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem., Int. Ed. 2013, 52, 13186.
- 3R. Chen, T. Zhao, F. Wu, Chem. Commun. 2015, 51, 18.
- 4Y. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc. 2004, 151, A1969.
- 5a) Z. Liang, L. Min, F. Jun, M. Liqiang, L. Gao, G. Jinghua, Energy Storage Mater. 2018, 11, 24; b) W. Chen, T. Lei, C. Wu, M. Deng, C. Gong, K. Hu, Y. Ma, L. Dai, W. Lv, W. He, X. Liu, J. Xiong, C. Yan, Adv. Energy Mater. 2018, 8, 1702348; c) L. Qian, Z. Fang-Lei, G. Yue-Peng, J. Zhao-Qing, H. Ya-Qin, Y. Ming, W. Wei-Kun, W. An-Bang, Energy Storage Mater. 2018, 13, 151; d) Z. Chen, J. Zhou, Y. Guo, C. Liang, J. Yang, J. Wang, Y. Nuli, Electrochim. Acta 2018, 282, 555. e) H. Dai, X. Kai, L. Xin, L. Chao, S. Zhang. J. Am. Chem. Soc. 2018, 140, 17515.
- 6a) Z. Guang, Y. Huang, X. Chen, X. Sun, M. Wang, X. Feng, C. Chen, X. Liu, Electrochim. Acta 2019, 307, 260; b) X. Zhou, X. Luo, H. Wang, J. Yang, H. Xu, M. Jia, J. Tang, J. Mater. Sci. 2019, 54, 9622; c) Y. Yang, S. Wang, L. Zhang, Y. Deng, H. Xu, X. Qin, G. Chen, Chem. Eng. J. 2019, 369, 77; d) M. Liu, J. Hou, J. Xiang, Y. Wang, X. Shen, K. Luan, Y. Zhang, J. Nanosci. Nanotechnol. 2019, 19, 5810; e) H. Tang, S. Yao, X. Shen, X. Xi, K. Xiao, Energy Technol. 2017, 5, 623; f) Y. X. Ren, T. S. Zhao, M. Liu, H. R. Jiang, C. Xiong, Energy Technol. 2018, 6, 2210.
- 7a) Y.-X. Mo, J.-X. Lin, Y.-J. Wu, Z.-W. Yin, Y.-Q. Lu, J.-T. Li, Y. Zhou, T. Sheng, L. Huang, S.-G. Sun, ACS Appl. Mater. Interfaces 2019, 11, 4065; b) J. Liu, W. Zhang, Y. Chen, P. Zhou, K. Zhang, Nanotechnology 2019, 30, 155401; c) X. Li, Z. Pan, Z. Li, X. Wang, B. Saravanakumar, Y. Zhong, L. Xing, M. Xu, C. Guo, W. Li, J. Power Sources 2019, 420, 22; d) Y. Kim, H. Han, Y. Noh, J. Bae, M.-H. Ham, W. B. Kim, ChemSusChem 2019, 12, 824; e) Y. Liu, A. K. Haridas, Y. Lee, K.-K. Cho, J.-H. Ahn, Appl. Surf. Sci. 2019, 472, 135.
- 8H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, J. Zhang, J. Wang, X. Tao, ACS Energy Lett. 2017, 2, 1711.
- 9a) Y. L. An, Z. Zhang, H. F. Fei, S. L. Xiong, B. Ji, J. K. Feng, ACS Appl. Mater. Interfaces 2017, 9, 12400; b) J.-Q. Huang, Z. Wang, Z.-L. Xu, W. G. Chong, X. Qin, X. Wang, J.-K. Kim, ACS Appl. Mater. Interfaces 2016, 8, 28670; c) G. M. Liang, J. X. Wu, X. Y. Qin, M. Liu, Q. Li, Y. B. He, J. K. Kim, B. H. Li, F. Y. Kang, ACS Appl. Mater. Interfaces 2016, 8, 23105.
- 10a) Y. Li, B. Shi, W. Liu, R. Guo, H. Pei, D. Ye, J. Xie, J. Kong, Electrochim. Acta 2018, 260, 912; b) S. Wang, Z. Yang, H. Zhang, H. Tan, J. Yu, J. Wu, Electrochim. Acta 2013, 106, 307; c) Y. Chen, X. Ji, Int. J. Electrochem. Sci. 2018, 13, 12155.
- 11a) R. Carter, L. Oakes, N. Muralidharan, A. P. Cohn, A. Douglas, C. L. Pint, ACS Appl. Mater. Interfaces 2017, 9, 7185; b) W. Li, J. Hicks-Garner, J. Wang, J. Liu, A. F. Gross, E. Sherman, J. Graetz, J. J. Vajo, P. Liu, Chem. Mater. 2014, 26, 3403; c) P. Liu, K. Zhu, K. Bian, Y. Xu, F. Zhang, W. Zhang, J. Zhang, W. Huang, J. Alloys Compd. 2018, 765, 901.
- 12C. Xiong, A. E. Aliev, B. Gnade, K. J. Balkus, Jr., ACS Nano 2008, 2, 293.
- 13F. Gao, X. Yan, Z. Wei, M. Qu, W. Fan, Int. J. Electrochem. Sci. 2019, 14, 3301.
- 14Y. Guo, Y. Zhang, Y. Zhang, M. Xiang, H. Wu, H. Liu, S. Dou, J. Mater. Chem. A 2018, 6, 19358.
- 15G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. De Gryse, J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167.
- 16a) S. Choi, D. H. Seo, M. R. Kaiser, C. Zhang, T. van der Laan, Z. J. Han, A. Bendavid, X. Guo, S. Yick, A. T. Murdock, D. Su, B. R. Lee, A. Du, S. X. Dou, G. Wang, J. Mater. Chem. A 2019, 7, 4596; b) H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao, G. W. Zheng, J. Y. Lee, Adv. Energy Mater. 2018, 8, 1801868.
- 17a) R. Carter, L. Oakes, N. Muralidharan, A. P. Cohn, A. Douglas, C. L. Pint, ACS Appl. Mater. Interfaces 2017, 9, 7185; b) A. Moretti, S. Jeong, S. Passerini, Chemelectrochem 2016, 3, 1048.
- 18X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nat. Commun. 2015, 6, 5682.
- 19a) X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L. F. Nazar, Adv. Energy Mater. 2016, 6, 9; b) X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nat. Commun. 2015, 6, 5682.
- 20L. Kong, I. Taniguchi, Adv. Powder Technol. 2017, 28, 1411.
- 21a) M. Holzapfel, A. Martinent, F. Alloin, B. Le Gorrec, R. Yazami, C. Montella, J. Electroanal. Chem. 2003, 546, 41; b) A. Ganesan, A. Varzi, S. Passerini, M. M. Shaijumon, Electrochim. Acta 2016, 214, 129.
- 22Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, J. Electrochem. Soc. 2013, 160, A553.