Model-Based Uncertainty Quantification for the Product Properties of Lithium-Ion Batteries
Vincent Laue
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorOke Schmidt
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorHenning Dreger
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Institute for Particle Technology, TU Braunschweig, Volkmaroder Strasse 5, D-38104 Braunschweig, Germany
Search for more papers by this authorXiangzhong Xie
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Search for more papers by this authorFridolin Röder
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorRené Schenkendorf
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Search for more papers by this authorArno Kwade
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Institute for Particle Technology, TU Braunschweig, Volkmaroder Strasse 5, D-38104 Braunschweig, Germany
Search for more papers by this authorCorresponding Author
Ulrike Krewer
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorVincent Laue
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorOke Schmidt
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorHenning Dreger
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Institute for Particle Technology, TU Braunschweig, Volkmaroder Strasse 5, D-38104 Braunschweig, Germany
Search for more papers by this authorXiangzhong Xie
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Search for more papers by this authorFridolin Röder
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorRené Schenkendorf
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Search for more papers by this authorArno Kwade
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Institute for Particle Technology, TU Braunschweig, Volkmaroder Strasse 5, D-38104 Braunschweig, Germany
Search for more papers by this authorCorresponding Author
Ulrike Krewer
Institute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Strasse 35, D-38106 Braunschweig, Germany
Battery LabFactory Braunschweig (BLB), TU Braunschweig, D-38106 Braunschweig, Germany
Search for more papers by this authorAbstract
A model-based uncertainty quantification (UQ) approach is applied to the manufacturing process of lithium-ion batteries (LIB). Cell-to-cell deviations and the influence of sub-cell level variations in the material and electrode properties of the cell performance are investigated experimentally and via modeling. The electrochemical battery model of the Doyle–Newman type is extended to cover the effect of sub-cell deviation of product properties of the LIB. The applied model is parameterized and validated using a stacked pouch cell containing Li(Ni1/3Co1/3Mn1/3)O2 (NMC) and graphite (LixC6). It is integrated into a sampling-based UQ framework. A nested point estimate method (PEM) is applied to a large number of independent normal distributed parameters. The simulations follow two consecutive nonideal manufacturing process steps: coating and calendering. The nested PEM provides a global sensitivity analysis that shows a change in sensitivity of the investigated parameters depending on the applied C-rate. Furthermore, the sub-cell level deviation of parameters in heterogeneous electrodes provokes a nonuniform current distribution in the cell. This alters the variance of the discharge capacity distribution. Therefore, sub-cell deviation has to be considered to quantify process uncertainties. The applied method is feasible and highly efficient for this purpose.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. Westermeier, G. Reinhart, T. Zeilinger, in 3rd Int. Electr. Drives Prod. Conf., IEEE, Nuremberg 2013.
- 2Y.-B. Yi, C.-W. Wang, A. M. Sastry, J. Eng. Mater. Technol. 2006, 128, 73.
- 3C.-W. Wang, Y.-B. Yi, A. M. Sastry, J. Shim, K. A. Striebel, J. Electrochem. Soc. 2004, 151, A1489.
- 4W. Haselrieder, S. Ivanov, D. K. Christen, H. Bockholt, A. Kwade, ECS Trans. 2013, 50, 59.
- 5A. van Bommel, R. Divigalpitiya, J. Electrochem. Soc. 2012, 159, A1791.
- 6G. F. Yang, S. K. Joo, Electrochim. Acta 2015, 170, 263.
- 7H. Zheng, L. Tan, G. Liu, X. Song, V. S. Battaglia, J. Power Sources 2012, 208, 52.
- 8G. Lenze, F. Röder, H. Bockholt, W. Haselrieder, A. Kwade, U. Krewer, J. Electrochem. Soc. 2017, 164, 1223.
- 9J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue, Mater. Sci. 1995, 270, 590.
- 10C. Edouard, M. Petit, C. Forgez, J. Bernard, R. Revel, J. Power Sources 2016, 325, 482.
- 11M. Hadigol, K. Maute, A. Doostan, J. Power Sources 2015, 300, 507.
- 12B. Kenney, K. Darcovich, D. D. MacNeil, I. J. Davidson, J. Power Sources 2012, 213, 391.
- 13S. Santhanagopalan, R. E. White, Int. J. Electrochem. 2012, 2012, 1.
10.1155/2012/395838 Google Scholar
- 14U. Krewer, F. Röder, E. Harinath, R. D. Braatz, B. Bedürftig, R. Findeisen, J. Electrochem. Soc. 2018, 165, A3656, ISSN 0013-4651, DOI: 10.1149/2.1061814jes.
- 15S. Santhanagopalan, R. E. White, ECS Trans. 2007, 3, 243.
- 16S. Santhanagopalan, R. E. White, Electrochem 2012, 2012, 1.
- 17J. Vazquez-Arenas, L. E. Gimenez, M. Fowler, T. Han, S. K. Chen, Energy Convers. Manag. 2014, 87, 472.
- 18V. Ramadesigan, K. Chen, N. A. Burns, V. Boovaragavan, R. D. Braatz, V. R. Subramanian, J. Electrochem. Soc. 2011, 158, A1048.
- 19A. P. Schmidt, M. Bitzer, A. W. Imre, L. Guzzella, J. Power Sources 2010, 195, 5071.
- 20N. Lin, X. Xie, R. Schenkendorf, U. Krewer, J. Electrochem. Soc. 2018, 165, A1169.
- 21S. F. Schuster, M. J. Brand, P. Berg, M. Gleissenberger, A. Jossen, J. Power Sources 2015, 297, 242.
- 22M. Dubarry, C. Truchot, M. Cugnet, B. Y. Liaw, K. Gering, S. Sazhin, D. Jamison, C. Michelbacher, J. Power Sources 2011, 196, 10328.
- 23F. Röder, S. Sonntag, D. Schröder, U. Krewer, Energy Technol. 2016, 4, 1588.
- 24D.-W. Chung, P. R. Shearing, N. P. Brandon, S. J. Harris, R. E. Garcia, J. Electrochem. Soc. 2014, 161, A422.
- 25M. Farkhondeh, C. Delacourt, J. Electrochem. Soc. 2012, 159, A177.
- 26H. Dreger, H. Bockholt, W. Haselrieder, A. Kwade, J. Electron. Mater. 2015, 44, 4434.
- 27H. Bockholt, W. Haselrieder, A. Kwade, ECS Trans. 2013, 50, 25.
- 28H. Bockholt, M. Indrikova, A. Netz, F. Golks, A. Kwade, J. Power Sources 2016, 325, 140.
- 29B. Westphal, H. Bockholt, T. Gunther, W. Haselrieder, A. Kwade, ECS Trans. 2015, 64, 57.
- 30V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, V. R. Subramanian, J. Electrochem. Soc. 2012, 159, R31, ISSN 0013-4651, DOI: 10.1149/2.018203jes.
- 31S. Mendoza, M. Rothenberger, J. Liu, H. K. Fathy, IFAC-PapersOnLine 2017, 50, 7314.
10.1016/j.ifacol.2017.08.1468 Google Scholar
- 32D. C. López, G. Wozny, A. Flores-Tlacuahuac, R. Vasquez-Medrano, V. M. Zavala, Ind. Eng. Chem. Res. 2016, 55, 3026.
- 33G. W. Tyler, Can. J. Math. 1953, 5, 393.
- 34E. Rosenblueth, Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 3812.
- 35Z. Lin, W. Li, Reliab. Eng. Syst. Saf. 2013, 111, 106.
- 36R. Schenkendorf, in Proc. 2nd Eur. Conf. Progn. Heal. Manag. Soc., Fort Worth, 2014.
- 37R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Application. Society for Industrial and Applied Mathematics, Philadelphia 2014.
- 38J. Marcicki, M. Canova, A. T. Conlisk, G. Rizzoni, J. Power Sources 2013, 237, 310.
- 39A. M. Colclasure, R. J. Kee, Electrochim. Acta 2010, 55, 8960.
- 40M. Doyle, T. F. Fuller, J. Newman, J. Electrochem. Soc. 1993, 140, 1526.
- 41N. Legrand, S. Raël, B. Knosp, M. Hinaje, P. Desprez, F. Lapicque, J. Power Sources 2014, 251, 370.
- 42Z. Liu, P. P. Mukherjee, J. Electrochem. Soc. 2014, 161, E3248.
- 43B. Westphal, H. Bockholt, T. Günther, W. Haselrieder, A. Kwade, ECS Trans. 2015, 64, 57.
- 44W. M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 91 edn. 2011.
- 45M. Ecker, S. Kabitz, I. Laresgoiti, D. U. Sauer, J. Electrochem. Soc. 2015, 162, A1849.
- 46M. S. Whittingham, Chem. Rev. 2004, 104, 4271.
- 47M. Dubarry, N. Vuillaume, B. Y. Liaw, J. Power Sources 2009, 186, 500.
- 48M. Dubarry, A. Devie, B. Y. Liaw, J. Power Sources 2016, 321, 36.
- 49K. Smith, C.-Y. Wang, J. Power Sources 2006, 160, 662.
- 50L. Hoffmann, J.-K. Grathwol, W. Haselrieder, R. Leithoff, T. Jansen, K. Dilger, K. Dröder, A. Kwade, M. Kurrat, Energy Technol. 2019, 7, 1900196.
- 51T. P. Heins, N. Schlüter, U. Schröder, ChemElectroChem 2017, 4, 1.
- 52N. Legrand, S. Raël, B. Knosp, M. Hinaje, P. Desprez, F. Lapicque, J. Power Sources 2014, 251, 370.
- 53C. von Lüders, V. Zinth, S. V. Erhard, P. J. Osswald, M. Hofmann, R. Gilles, A. Jossen, J. Power Sources 2017, 342, 17.
- 54C. Pastor-Fernández, T. Bruen, W. D. Widanage, M. A. Gama-Valdez, J. Marco, J. Power Sources 2016, 329, 574.
- 55T. V. Reshetenko, K. Bethune, R. Rocheleau, J. Power Sources 2012, 218, 412.
- 56T. V. Reshetenko, K. Bethune, M. A. Rubio, R. Rocheleau, J. Power Sources 2014, 269, 344.
- 57T. V. Reshetenko, J. St-Pierre, J. Power Sources 2016, 333, 237.
- 58U. Krewer, A. Kamat, K. Sundmacher, J. Electroanal. Chem. 2007, 609, 105.
- 59S. S. Zhang, J. Power Sources 2006, 161, 1385.
- 60L. Somerville, J. Bareno, S. Trask, P. Jennings, A. McGordon, C. Lyness, I. Bloom, J. Power Sources 2016, 335, 189.