Nonuniform Redistribution of Sulfur and Lithium upon Cycling: Probing the Origin of Capacity Fading in Lithium–Sulfur Pouch Cells
Long Kong
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorQi Jin
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 Heilongjiang, China
Search for more papers by this authorCorresponding Author
Jia-Qi Huang
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorLi-Da Zhao
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorPeng Li
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorBo-Quan Li
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Hong-Jie Peng
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorXitian Zhang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 Heilongjiang, China
Search for more papers by this authorCorresponding Author
Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorLong Kong
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorQi Jin
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 Heilongjiang, China
Search for more papers by this authorCorresponding Author
Jia-Qi Huang
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorLi-Da Zhao
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorPeng Li
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorBo-Quan Li
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Hong-Jie Peng
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorXitian Zhang
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 Heilongjiang, China
Search for more papers by this authorCorresponding Author
Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorAbstract
Lithium–sulfur (Li–S) batteries have emerged as a promising candidate for the next-generation high-energy-density system for energy-demanding applications. Despite innovations in concepts and materials that significantly improve the electrochemical performance of coin cells, Li–S pouch cells have the disadvantages of short cycle life and inferior rate capability in comparison with coin cells. Bridging the fundamentals of Li–S chemistry to the hindrance on its practical application is of great importance for the development of Li–S batteries. Herein, the nonuniformity of the distribution of sulfur and lithium upon cycling is probed as one of the origins for the rapid capacity fading in a Li–S pouch cell. In particular, the nonuniform evolution of sulfur/lithium distribution impairs the discharge capacity of a low-voltage plateau. Lithium polysulfide intermediates produced on discharge tend to diffuse toward the bottom of a pouch cell, leading to agglomeration of sulfur and thus passivating the cathode. The migration of polysulfides also etches lithium away from the central region of the anode and induces nonuniform anode pulverization. Herein, the importance of a rational design of a pouch cell to mitigate the nonuniform redistribution of the active material toward stable Li–S pouch cells is highlighted.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900111-sup-0001-SuppData-S1.pdf277.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Borchardt, M. Oschatz, S. Kaskel, Chem. Eur. J. 2016, 22, 7324; b) J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013; c) X. Shen, H. Liu, X.-B. Cheng, C. Yan, J.-Q. Huang, Energy Storage Mater. 2018, 12, 161; d) L. Kong, C. Yan, J.-Q. Huang, M.-Q. Zhao, M.-M. Titirici, R. Xiang, Q. Zhang, Energy Environ. Mater. 2018, 1, 100.
- 2a) R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823; b) J. Liu, M. Wang, N. Xu, T. Qian, C. Yan, Energy Storage Mater. 2018, 15, 53; c) H. Wang, W. Zhang, J. Xu, Z. Guo, Adv. Funct. Mater. 2018, 28, 1707520.
- 3a) H.-J. Peng, J.-Q. Huang, Q. Zhang, Chem. Soc. Rev. 2017, 46, 5237; b) S.-Y. Li, W.-P. Wang, H. Duan, Y.-G. Guo, J. Energy Chem. 2018, 27, 1555.
- 4S.-H. Chung, C.-H. Chang, A. Manthiram, Adv. Funct. Mater. 2018, 28, 1801188.
- 5a) R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Adv. Energy Mater. 2015, 5, 1402273; b) Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, R. Wang, Adv. Funct. Mater. 2018, 28, 1707597; c) H. Shi, W. Lv, C. Zhang, D.-W. Wang, G. Ling, Y. He, F. Kang, Q.-H. Yang, Adv. Funct. Mater. 2018, 28, 1800508.
- 6X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu, L. Zhao, Y. Zhang, W. Zhu, S.-T. Yang, Q. Zhang, Energy Storage Mater. 2017, 6, 18.
- 7a) C. Weller, S. Thieme, P. Haertel, H. Althues, S. Kaskel, J. Electrochem. Soc. 2017, 164, A3766; b) C. Barchasz, L. Boutafa, E. Mayousse, B. Chavillon, Electrochim. Acta 2018, 292, 974; c) Y. Ye, F. Wu, Y. Liu, T. Zhao, J. Qian, Y. Xing, W. Li, J. Huang, L. Li, Q. Huang, X. Bai, R. Chen, Adv. Mater. 2017, 29, 1700598.
- 8B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Energy Environ. Mater. 2018, 1, 196.
- 9a) R. Wu, S. Chen, J. Deng, X. Huang, Y. Song, R. Gan, X. Wan, Z. Wei, J. Energy Chem. 2018, 27, 1661; b) F. Lodi-Marzano, S. Leuthner, H. Sommer, T. Brezesinski, J. Janek, Energy Technol. 2015, 3, 830; c) Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang, Y. Xia, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 2018, 8, 1701110; d) M. Weinberger, J. Munding, M. Linden, M. Wohlfahrt-Mehrens, Energy Technol. 2018, 6, 1797; e) J.-L. Shi, C. Tang, J.-Q. Huang, W. Zhu, Q. Zhang, J. Energy Chem. 2018, 27, 167; f) X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Chem 2017, 2, 258.
- 10G. Zhang, H.-J. Peng, C.-Z. Zhao, X. Chen, L.-D. Zhao, P. Li, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16732.
- 11a) J. Zhang, Z. Li, Y. Chen, S. Gao, X. W. Lou, Angew. Chem. Int. Ed. 2018, 57, 10944; b) J. Xie, H.-J. Peng, J.-Q. Huang, W.-T. Xu, X. Chen, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 16223; c) Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 15549; d) C. Ye, Y. Jiao, H. Jin, A. D. Slattery, K. Davey, H. Wang, S.-Z. Qiao, Angew. Chem. Int. Ed. 2018, 57, 16703; e) L. Kong, X. Chen, B. Q. Li, H. J. Peng, J. Q. Huang, J. Xie, Q. Zhang, Adv. Mater. 2018, 30, 1705219; f) Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu, Y. Shao, F. Ding, Q. Zhang, J. Sun, Z. Liu, Energy Environ. Sci. 2018, 11, 2620; g) L. Kong, I. Taniguchi, Adv. Powder Technol. 2017, 28, 1411; h) H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1802768.
- 12a) J.-L. Qin, H.-J. Peng, J.-Q. Huang, X.-Q. Zhang, L. Kong, J. Xie, M. Zhao, R. Liu, H. Zhao, Q. Zhang, Small Methods 2018, 2, 1800100; b) Y.-S. Su, A. Manthiram, Chem. Commun. 2012, 48, 8817; c) L. Kong, B.-Q. Li, H.-J. Peng, R. Zhang, J. Xie, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2018, 8, 1800849; d) Y. X. Ren, T. S. Zhao, M. Liu, H. R. Jiang, C. Xiong, Energy Technol. 2018, 6, 2210; e) H. Tang, S. Yao, X. Shen, X. Xi, K. Xiao, Energy Technol. 2017, 5, 623; f) L. Kong, H.-J. Peng, J.-Q. Huang, Q. Zhang, Nano Res. 2017, 10, 4027; g) L. Kong, H.-J. Peng, J.-Q. Huang, W. Zhu, G. Zhang, Z.-W. Zhang, P.-Y. Zhai, P. Sun, J. Xie, Q. Zhang, Energy Storage Mater. 2017, 8, 153.
- 13H. Li, L. Sun, Y. Zhang, T. Tan, G. Wang, Z. Bakenov, J. Energy Chem. 2017, 26, 1276.
- 14a) Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nat. Energy 2018, 3, 783; b) S.-H. Chung, A. Manthiram, Adv. Mater. 2018, 30, 1705951; c) H. Pan, K. S. Han, M. H. Engelhard, R. Cao, J. Chen, J.-G. Zhang, K. T. Mueller, Y. Shao, J. Liu, Adv. Funct. Mater. 2018, 28, 1707234; d) A. Shyamsunder, W. Beichel, P. Klose, Q. Pang, H. Scherer, A. Hoffmann, G. K. Murphy, I. Krossing, L. F. Nazar, Angew. Chem. Int. Ed. 2017, 56, 6192.
- 15X. Chen, T.-Z. Hou, B. Li, C. Yan, L. Zhu, C. Guan, X.-B. Cheng, H.-J. Peng, J.-Q. Huang, Q. Zhang, Energy Storage Mater. 2017, 8, 194.
- 16E. Zhao, K. Nie, X. Yu, Y.-S. Hu, F. Wang, J. Xiao, H. Li, X. Huang, Adv. Funct. Mater. 2018, 28, 1707543.
- 17a) R. Bugga, J.-P. Jones, S. C. Jones, F. C. Krause, J. Pasalic, D. S. Ganapathi, M. Hendrickson, E. J. Plichta, J. Electrochem. Soc. 2018, 165, A6021; b) P. Titscher, P. Schoen, M. Horst, U. Krewer, A. Kwade, Energy Technol. 2018, 6, 1139.
- 18C.-Z. Zhao, X.-B. Cheng, R. Zhang, H.-J. Peng, J.-Q. Huang, R. Ran, Z.-H. Huang, F. Wei, Q. Zhang, Energy Storage Mater. 2016, 3, 77.
- 19a) P. Strubel, S. Thieme, C. Weller, H. Althues, S. Kaskel, Nano Energy 2017, 34, 437; b) H.-J. Peng, J.-Q. Huang, X.-Y. Liu, X.-B. Cheng, W.-T. Xu, C.-Z. Zhao, F. Wei, Q. Zhang, J. Am. Chem. Soc. 2017, 139, 8458.
- 20W. Zhao, G. Luo, C.-Y. Wang, J. Power Sources 2014, 257, 70.
- 21A. Samba, N. Omar, H. Gualous, O. Capron, P. Van den Bossche, J. Van Mierlo, Electrochim. Acta 2014, 147, 319.
- 22Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186.
- 23P. P. R. M. L. Harks, C. B. Robledo, T. W. Verhallen, P. H. L. Notten, F. M. Mulder, Adv. Energy Mater. 2017, 7, 1601635.
- 24a) Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Adv. Funct. Mater. 2018, 28, 1707536; b) T.-Z. Hou, W.-T. Xu, X. Chen, H.-J. Peng, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8178; c) D. Eroglu, K. R. Zavadil, K. G. Gallagher, J. Electrochem. Soc. 2015, 162, A982.
- 25A. Jozwiuk, B. B. Berkes, T. Weiss, H. Sommer, J. Janek, T. Brezesinski, Energy Environ. Sci. 2016, 9, 2603.