Classification of Calendering-Induced Electrode Defects and Their Influence on Subsequent Processes of Lithium-Ion Battery Production
Corresponding Author
Till Günther
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorDavid Schreiner
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorAjinkya Metkar
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorChris Meyer
Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
Battery LabFactory Braunschweig, Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig, Germany
Search for more papers by this authorArno Kwade
Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
Battery LabFactory Braunschweig, Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig, Germany
Search for more papers by this authorGunther Reinhart
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorCorresponding Author
Till Günther
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorDavid Schreiner
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorAjinkya Metkar
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorChris Meyer
Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
Battery LabFactory Braunschweig, Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig, Germany
Search for more papers by this authorArno Kwade
Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany
Battery LabFactory Braunschweig, Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig, Germany
Search for more papers by this authorGunther Reinhart
Institute of Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München, Germany
Search for more papers by this authorAbstract
The production of lithium-ion cells consists of a series of highly interlinked process steps. Calendering, as the last step of electrode manufacturing, has a significant impact on electrode characteristics. The process primarily aims at enhancing the electrode energy density and hereinafter, minimizing the plastic deformability, improving the conductivity, and determining the pore structure of the electrode. So far, electrode characteristics are mainly investigated regarding the impact on cell quality. However, they also affect their subsequent processabilities in the process chain, which is crucial for cost improvement, for example, by reduction of scrap rates. Herein, a methodical identification, description, and categorization of electrode characteristics is conducted based on a literature review, an expert survey, and operating experience. The methodical classification will provide a basis for the modeling of the interaction between the influencing factors (product properties, process parameters, and machine characteristics) and electrode characteristics during calendering.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. O. Colpan, F. Kadioglu (Eds.) Causes, Impacts and Solutions to Global Warming, Springer, New York 2013.
- 2B. Nykvist, M. Nilsson, Nat. Clim. Change 2015, 5, 329.
- 3O. Schmidt, A. Hawkes, A. Gambhir, I. Staffell, Nat. Energy 2017, 2, DOI: 10.1038/nenergy.2017.110.
- 4M. Westermeier, G. Reinhart, M. Steber, Procedia CIRP 2014, 20, 13.
10.1016/j.procir.2014.05.026 Google Scholar
- 5W. Haselrieder, PhD Dissertation, Technische Universität Braunschweig, 2016.
- 6A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, K. Droeder, Nat. Energy 2018, 3, 290.
- 7J. Kaiser, V. Wenzel, H. Nirschl, B. Bitsch, N. Willenbacher, M. Baunach, M. Schmitt, S. Jaiser, P. Scharfer, W. Schabel, Chem. Ing. Tech. 2014, 86, 695
- 8T. Günther, N. Billot, J. Schuster, J. Schnell, F. B. Spingler, H. A. Gasteiger, AMR 2016, 1140, 304.
10.4028/www.scientific.net/AMR.1140.304 Google Scholar
- 9H. Zheng, L. Tan, G. Liu, X. Song, V. S. Battaglia, J. Power Sources 2012, 208, 52.
- 10W. Haselrieder, S. Ivanov, D. K. Christen, H. Bockholt, A. Kwade, ECS Trans. 2013, 50, 59.
- 11D. Jeong, J. Lee, Energy 2014, 75, 525.
- 12D. P. Julien Breger, can be found under https://elibama.files.wordpress.com/2014/10/iii-c-electrodes-calendering.pdf, 2014 (accessed: January 2019).
- 13Y. Sheng, C. R. Fell, Y. K. Son, B. M. Metz, J. Jiang, B. C. Church, Front. Energy Res. 2014, 2.
10.3389/fenrg.2014.00056 Google Scholar
- 14A. Schilling, J. Schmitt, F. Dietrich, K. Dröder, Energy Technol. 2016, 4, 1502.
- 15H. Bockholt, M. Indrikova, A. Netz, F. Golks, A. Kwade, J. Power Sources 2016, 325, 140.
- 16G. Reinhart, T. Zeilinger, J. Kurfer, M. Westermeier, C. Thiemann, M. Glonegger, M. Wunderer, C. Tammer, M. Schweier, M. Heinz, Future Trends in Production Engineering. Proc. of the first Conf. of the German Academic Society for Production Engineering (WGP), Berlin, Germany, 8–9th June 2011 (Ed: G. Schuh), Springer, Berlin 2013.
- 17M. Schmitt, M. Baunach, L. Wengeler, K. Peters, P. Junges, P. Scharfer, W. Schabel, Chem. Eng. Process. 2013, 68, 32.
- 18E. D. Cohen, Modern Coating and Drying Technology, Wiley-VCH, Weinheim 1992.
- 19M. Schmitt, R. Diehm, P. Scharfer, W. Schabel, J. Coat. Technol. Res. 2015, 12, 877.
- 20H. Bockholt, W. Haselrieder, A. Kwade, ECS Trans. 2013, 50, 25.
- 21B. Westphal, H. Bockholt, T. Gunther, W. Haselrieder, A. Kwade, ECS Trans. 2015, 64, 57.
- 22F. Font, B. Protas, G. Richardson, J. M. Foster, J. Power Sources 2018, 393, 177.
- 23R. Morasch, J. Landesfeind, B. Suthar, H. A. Gasteiger, J. Electrochem. Soc. 2018, 165, A2008.
- 24S. Jaiser, M. Müller, M. Baunach, W. Bauer, P. Scharfer, W. Schabel, J. Power Sources 2016, 318, 210.
- 25C. Schilcher, C. Meyer, A. Kwade, Energy Technol. 2016, 4, 1604.
- 26H. Y. Tran, G. Greco, C. Täubert, M. Wohlfahrt-Mehrens, W. Haselrieder, A. Kwade, J. Power Sources 2012, 210, 276.
- 27M. Schmitt, P. Scharfer, W. Schabel, J. Coat. Technol. Res. 2014, 11, 57, DOI: 10.1007/s11998-013-9498-y.
- 28S. Jaiser, A. Friske, M. Baunach, P. Scharfer, W. Schabel, Drying Technol. 2017, 35, 1266.
- 29S. Jaiser, N. Sanchez Salach, M. Baunach, P. Scharfer, W. Schabel, Drying Technol. 2017, 35, 1807.
- 30M. Baunach, S. Jaiser, S. Schmelzle, H. Nirschl, P. Scharfer, W. Schabel, Drying Technol. 2016, 34, 462.
- 31C. Meyer, H. Bockholt, W. Haselrieder, A. Kwade, J. Mater. Process. Technol. 2017, 249, 172.
- 32W. Haselrieder, B. Westphal, H. Bockholt, A. Diener, S. Höft, A. Kwade, Int. J. Adhes. Adhes. 2015, 60, 1
- 33L. Froboese, P. Titscher, B. Westphal, W. Haselrieder, A. Kwade, Mater. Charact. 2017, 133, 102.
- 34H. Yamamoto, H. Mori, Lithium-Ion Batteries, Springer, New York 2009.
- 35J. Kurfer, M. Westermeier, C. Tammer, G. Reinhart, CIRP Annals 2012, 61, 1.
- 36J. Schnell, G. Reinhart, Procedia CIRP 2016, 57, 568.
10.1016/j.procir.2016.11.098 Google Scholar
- 37J. Schnell, C. Nentwich, F. Endres, A. Kollenda, F. Distel, T. Knoche, G. Reinhart, J. Power Sources 2019, 413, 360.
- 38H. Y. Tran, C. Täubert, M. Wohlfahrt-Mehrens, Prog. Solid State Chem. 2014, 42, 118.
- 39F. J. Günter, R. Gilles, M. Schulz, S. Rössler, W. Braunwarth, G. Reinhart, Energy Technol. 2019, DOI: 10.1002/ente.201801108.
- 40J. M. Westermeier, G. Reinhart, in 4th CIRP Conf. Assembly Technologies and Systems/Ann Harbor, Ann Arbor, Michigan, USA, 2012, 33.
- 41H. Kuolt, in Int. Battery Production Conf./Braunschweig, Brunswick, Germany, 2018.
- 42J. Cannarella, C. B. Arnold, J. Power Sources 2014, 245, 745.
- 43J. Cannarella, C. B. Arnold, J. Electrochem. Soc. 2015, 162, A1365.
- 44S. G. Lee, D. H. Jeon, J. Power Sources 2014, 265, 363.
- 45J. B. Habedank, F. J. Günter, N. Billot, R. Gilles, T. Neuwirth, G. Reinhart, M. F. Zaeh, Int. J. Adv. Manuf. Technol. 2019, 273, DOI: 10.1007/s00170-019-03347-4.
- 46W. Pfleging, NLM 2018, 7, DOI: 10.1515/nanoph-2017-0044.
- 47K. G. Gallagher, S. E. Trask, C. Bauer, T. Woehrle, S. F. Lux, M. Tschech, P. Lamp, B. J. Polzin, S. Ha, B. Long, Q. Wu, J. Electrochem. Soc. 2016, A138.
- 48L. Somerville, J. Bareño, S. Trask, P. Jennings, A. McGordon, C. Lyness, I. Bloom, J. Power Sources 2016, 335, 189.
- 49J. B. Habedank, L. Kraft, A. Rheinfeld, C. Krezdorn, A. Jossen, M. F. Zaeh, J. Electrochem. Soc. 2018, 165, A1563.
- 50J. Schnell, T. Günther, T. Knoche, C. Vieider, L. Köhler, A. Just, M. Keller, S. Passerini, G. Reinhart, J. Power Sources 2018, 382, 160.