In Situ Synthesis of Sulfur Host with Chemisorption and Electrocatalytic Capability toward High-Performance Lithium–Sulfur Batteries
Huali Yu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaoqing Guo
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaofei Liu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorSuya Lu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYoucai Lu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Qingchao Liu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Zhongjun Li
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Zhanhang He
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorHuali Yu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaoqing Guo
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXiaofei Liu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorSuya Lu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYoucai Lu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Qingchao Liu
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Zhongjun Li
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Zhanhang He
The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAbstract
Lithium–sulfur (Li–S) batteries have been attracting much attention because of their outstanding theoretical capacity and abundance of sulfur. However, there are still some drawbacks, in which the shuttling of soluble polysulfides in the charge and discharge process severely limits its practical application. Herein, new 3D interconnected carbon nanotubes (CNTs) embedded with in situ grown cobalt disulfide (CoS2) nanoparticles (CoS2/CNTs) as an advanced matrix for sulfur electrode are developed. The 3D interconnected CNTs exhibit a good conductivity and a highly porous structure, which are promising for fast electron transport and buffering volume expansion. Furthermore, abundant CoS2 nanoparticles not only help to chemically trap the soluble polysulfides but also dynamically enhance polysulfide redox reactions. Because of these synchronous advantages, enhanced electrochemical performances including high capacity, superior redox reaction kinetics, and excellent cycling stability are achieved.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900015-sup-0001-SuppData-S1.docx1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Manthiram, ACS Cent. Sci. 2017, 3, 1063.
- 2Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605.
- 3S. H. Chung, C. Chang, A. Manthiram, J. Power Sources 2016, 334, 179.
- 4A. Manthiram, Y. Fu, Y. Su, Acc. Chem. Res. 2013, 46, 1125.
- 5Y. Yin, S. Xin, Y. Guo, L. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186.
- 6G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue, X. Zhang, X. Yan, J. Li, Energy Environ. Sci. 2017, 10, 2544.
- 7J. Zhang, H. Hu, Z. Li, X. Lou, Angew. Chem. Int. Ed. 2016, 55, 3982.
- 8Y. Li, J. Fan, M. Zheng, Q. Dong, Energy Environ. Sci. 2016, 9, 1998.
- 9Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, Y. Huang, Adv. Energy Mater. 2014, 4, 1301473.
- 10G. Babu, K. Ababtain, K. Y. S. Ng, L. M. R. Arava, Sci. Rep. 2015, 5, 8763.
- 11C. Dai, J.-M. Y. Lim, M. Wang, L. Hu, Y. Chen, Z. Chen, H. Chen, S.-J. Bao, B. Shen, Y. Li, G. Henkelman, M. Xu, Adv. Funct. Mater. 2018, 28, 1704443.
- 12Z. Yuan, H. Peng, T. Hou, J. Huang, C. Chen, D. Wang, X. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519.
- 13L. Ma, H. Lin, W. Zhang, P. Zhao, G. Zhu, Y. Hu, R. Chen, Z. Tie, J. Liu, Z. Jin, Nano Lett. 2018, 18, 7949.
- 14Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang, Y. Xia, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 2018, 8, 1701110.
- 15T. Chen, B. Cheng, G. Zhu, R. Chen, Y. Hu, L. Ma, H. Lv, Y. Wang, J. Liang, Z. Tie, Z. Jin, J. Liu, Nano Lett. 2017, 17, 437.
- 16Y. Yang, J. Zhang, Adv. Energy Mater. 2018, 8, 1801778.
- 17L. Luo, X. Qin, J. Wu, G. Liang, Q. Li, M. Liu, F. Kang, G. Chen, B. Li, J. Mater Chem. A 2018, 6, 8612.
- 18J. Xie, H. Peng, J. Huang, W. Xu, X. Chen, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 16223.
- 19R. Cao, W. Xu, D. P. Lv, J. Xiao, J. Zhang, Adv. Energy Mater. 2015, 5, 1402273.
- 20S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X. Cheng, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 2018, 8, 1702322.
- 21K. Mi, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Adv. Funct. Mater. 2016, 26, 1571.
- 22J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288.
- 23G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263.
- 24Y. Zhong, S. Wang, Y. Sha, M. Liu, R. Cai, L. Li, Z. Shao, J. Mater Chem. A 2016, 4, 9526.
- 25J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864.
- 26Y. He, S. Bai, Z. Chang, Q. Li, Y. Qiao, H. Zhou, J. Mater Chem. A 2018, 6, 9032.
- 27L. Miao, W. Wang, K. Yuan, Y. Yang, A. Wang, Chem. Commun. 2014, 50, 13231.
- 28S. Lu, Y. Cheng, X. Wu, J. Liu, Nano Lett. 2013, 13, 2485.
- 29Q. Liu, J. Zhang, S. He, R. Zou, C. Xu, Z. Cui, X. Huang, G. Guan, W. Zhang, K. Xu, J. Hu, Small 2018, 14, 1703816.
- 30L. Ma, R. Chen, G. Zhu, Y. Hu, Y. Wang, T. Chen, J. Liu, Z. Jin, ACS Nano 2017, 11, 7274.
- 31J. Zhou, N. Lin, W. Cai, C. Guo, K. Zhang, J. Zhou, Y. Zhu, Y. Qian, Electrochim. Acta 2016, 218, 243.
- 32L. Ma, W. Zhang, L. Wang, Y. Hu, G. Zhu, Y. Wang, R. Chen, T. Chen, Z. Tie, J. Liu, Z. Jin, ACS Nano 2018, 12, 4868.
- 33T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, J. Am. Chem. Soc. 2017, 139, 12710.
- 34Y. Fan, Z. Yang, W. Hua, D. Liu, T. Tao, M. M. Rahman, W. Lei, S. Huang, Y. Chen, Adv. Energy Mater. 2017, 7, 1602380.
- 35C. Ye, Y. Jiao, H. Jin, A. D. Slattery, K. Davey, H. Wang, S.-Z. Qiao, Angew. Chem. Int. Ed. 2018, 57, 16703.
- 36F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang, L. Lu, H. Yao, M. Antonietti, S. Yu, Nano Lett. 2018, 18, 1035.
- 37Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 15549.
- 38J. Zhang, Z. Li, Y. Chen, S. Gao, X. Lou, Angew. Chem. Int. Ed. 2018, 57, 10944.
- 39Z. W. Seh, J. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017.
- 40X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang, Z. Liu, Adv. Energy Mater. 2018, 8, 1800201.
- 41S. Zhang, D. T. Tran, J. Mater Chem. A 2016, 4, 4371.
- 42J. Zhang, L. Yu, X. Lou, Nano Res. 2016, 10, 4298.
- 43Z. Zhang, F. Xiao, S. Wang, J. Mater Chem. A 2015, 3, 11215.
- 44L. Fei, X. Li, W. Bi, Z. Zhuo, W. Wei, L. Sun, W. Lu, X. Wu, K. Xie, C. Wu, L. W. Chan Helen, Y. Wang, Adv. Mater. 2015, 27, 5936.
- 45L. Kang, J. Deng, T. Liu, M. Cui, X. Zhang, P. Li, Y. Li, X. Liu, W. Liang, J. Power Sources 2015, 275, 126.
- 46J. Zhang, W. Xiao, P. Xi, S. Xi, Y. Du, D. Gao, J. Ding, ACS Energy Lett. 2017, 2, 1022.
- 47W. Mei, J. Huang, L. Zhu, Z. Ye, Y. Mai, J. Tu, J. Mater Chem. 2012, 22, 9315.
- 48Y. Yang, F. Li, W. Li, W. Gao, H. Wen, J. Li, Y. Hu, Y. Luo, R. Li, Int. J. Hydrogen. Eng. 2017, 42, 6665–6673.
- 49K. Zou, Y. Liu, Y. Jiang, C. Yu, M. Yue, Z. Li, Inorg. Chem. 2017, 56, 6184.
- 50Q. Zhang, Y. Wang, Z. Seh, Z. Fu, R. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780.
- 51C. Barchasz, F. Molton, C. Duboc, J. C. Lepr<!--${ifMathjaxEnabled: 10.1002%2Fente.201900015}-->eˆ<!--${/ifMathjaxEnabled:}--><!--${ifMathjaxDisabled: 10.1002%2Fente.201900015}--><!--${/ifMathjaxDisabled:}-->tre, S. Patoux, F. Alloin, Anal. Chem. 2012, 84, 3973.
- 52Q. Pang, D. Kundu, L. F. Nazar, Mater. Horiz. 2016, 3, 130.
- 53A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751.
- 54W. Ren, L. Xu, L. Zhu, X. Wang, X. Ma, D. Wang, ACS Appl. Mater. Interfaces 2018, 10, 11642.
- 55M. Chen, Q. Lu, S. Jiang, C. Huang, X. Wang, B. Wu, K. Xiang, Y. Wu, Chem. Eng. J. 2018, 335, 831.