Enantioselective Construction of Spirooxindole-γ-butyrolactones via NHC-Bound Isobenzofulvene [10π+2π] Cycloaddition
Shuixiu Su
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorYing Chen
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorQiyu Wang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorJian Zhang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorCorresponding Author
Yang-Zi Liu
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Wei-Ping Deng
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorShuixiu Su
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorYing Chen
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorQiyu Wang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorJian Zhang
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
Search for more papers by this authorCorresponding Author
Yang-Zi Liu
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Wei-Ping Deng
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
We report an N-heterocyclic carbene (NHC)-catalyzed [10π+2π] cycloaddition between indene-2-carbaldehydes and isatins, delivering spirooxindole-γ-butyrolactones with moderate yields (up to 68%) and excellent enantioselectivity (up to 93% ee). This transformation proceeds via NHC-bound isobenzofulvene intermediates and represents the first successful application of all-carbon higherene in NHC-catalyzed [10π+2π] cycloadditions.
Supporting Information
Filename | Description |
---|---|
cjoc202500262-sup-0001-supinfo.pdfPDF document, 6.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews: (a) Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-Heterocyclic Carbenes. Chem. Rev. 2007, 107, 5606–5655; (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496; (c) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chem. Rev. 2015, 115, 9307–9387; (d) James, T.; Van Gemmeren, M.; List, B. Development and Applications of Disulfonimides in Enantioselective Organocatalysis. Chem. Rev. 2015, 115, 9388–9409; (e) Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in Inert C–H Bond Functionalization. Chem. Rev. 2017, 117, 9433–9520; (f) Wang, Y.; Wei, D.; Zhang, W. Recent Advances on Computational Investigations of N-Heterocyclic Carbene Catalyzed Cycloaddition/Annulation Reactions: Mechanism and Origin of Selectivities. ChemCatChem 2018, 10, 338–360; (g) Frankowski, S.; Romaniszyn, M.; Skrzyńska, A.; Albrecht, Ł. The Game of Electrons: Organocatalytic Higher-Order Cycloadditions Involving Fulvene- and Tropone-Derived Systems. Chem. Eur. J. 2020, 26, 2120–2132; (h) Chen, X.; Wang, H.; Jin, Z.; Chi, Y. R. N-Heterocyclic Carbene Organocatalysis: Activation Modes and Typical Reactive Intermediates. Chin. J. Chem. 2020, 38, 1167–1202; (i) Jessen, N. I.; McLeod, D.; Jørgensen, K. A. Higher-Order Cycloadditions in the Age of Catalysis. Chem 2022, 8, 20–30; (j) Li, Q.-Z.; Zeng, R.; Han, B.; Li, J.-L. Single-Electron Transfer Reactions Enabled by N-heterocyclic Carbene Organocatalysis. Chem. Eur. J. 2021, 27, 3238–3250; (k) Jessen, N. I.; McLeod, D.; Jørgensen, K. A. Higher-Order Cycloadditions in the Age of Catalysis. Chem 2022, 8, 20–30; (l) Jin, Z.; Zhang, F.; Xiao, X.; Wang, N.; Lv, X.; Zhou, L. Org. Chem. Front. 2024, 11, 2112–2133.
- 2For selected examples: (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategies for Organic Catalysis: New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction. J. Am. Chem. Soc. 2000, 122, 4243–4244;
(b) List, B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002, 124, 5656–5657;
(c) Hayashi, Y.; Gotoh, H.; Honma, M.; Sankar, K.; Kumar, I.; Ishikawa, H.; Konno, K.; Yui, H.; Tsuzuki, S.; Uchimaru, T. Organocatalytic, Enantioselective Intramolecular [6 + 2] Cycloaddition Reaction for the Formation of Tricyclopentanoids and Insight on Its Mechanism from a Computational Study. J. Am. Chem. Soc. 2011, 133, 20175–20185;
(d) Mahatthananchai, J.; Bode, J. W. On the Mechanism of N-Heterocyclic Carbene-Catalyzed Reactions Involving Acyl Azoliums. Acc. Chem. Res. 2014, 47, 696–707;
(e) Chen, X.-Y.; Gao, Z.-H.; Ye, S. Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis. Acc. Chem. Res. 2020, 53, 690–702;
(f) Li, Q.-Z.; Zeng, R.; Fan, Y.; Liu, Y.-Q.; Qi, T., Zhang, X.; Li, J.-L. Remote C (sp3)−H Acylation of Amides and Cascade Cyclization via N-Heterocyclic Carbene Organocatalysis. Angew. Chem. Int. Ed. 2022, 134, e202116629;
10.1002/ange.202116629 Google Scholar(g) Li, Q.-Z.; Kou, X.-X.; Qi, T.; Li, J.-L. Merging N-Heterocyclic Carbene Organocatalysis with Hydrogen Atom Transfer Strategy. ChemCatChem 2023, 15, e202201320; (h) Zeng, R.; Xie, C.; Xing, J.-D.; Dai, H.-Y.; He, M.-H.; Xu, P.-S.; Yang, Q.-C.; Han, B.; Li, J.-L. Construction of Alkenyl-isoquinolinones through NHC-catalyzed Remote C(sp3)–H Acylation and Cascade Cyclization of Benzamides and Enals. Tetrahedron 2023, 132, 133239–133247.
- 3 Nair, V.; Poonoth, M.; Vellalath, S.; Suresh, E.; Thirumalai, R. An N-Heterocyclic Carbene-Catalyzed [8 + 3] Annulation of Tropone and Enals via Homoenolate. J. Org. Chem. 2006, 71, 8964–8965.
- 4 Xia, F.; Gao, Z.-H.; Zhang, C.-L.; Ye, S. Oxidative N-Heterocyclic Carbene-Catalyzed [8+2] Annulation of Tropone and Aldehydes: Synthesis of Cycloheptatriene-Fused Furanones. Adv. Synth. Catal. 2019, 361, 2291–2294.
- 5 Wang, S.; Rodríguez-Escrich, C.; Fianchini, M.; Maseras, F.; Pericàs, M. A. Diastereodivergent Enantioselective [8 + 2] Annulation of Tropones and Enals Catalyzed by N-Heterocyclic Carbenes. Org. Lett. 2019, 21, 3187–3192.
- 6 He, C.; Li, Z.; Zhou, H.; Xu, J. Stereoselective [8 + 2] Cycloaddition Reaction of Azaheptafulvenes with α-Chloro Aldehydes via N-Heterocyclic Carbene Catalysis. Org. Lett. 2019, 21, 8022–8026.
- 7 Yang, X.; Luo, G.; Zhou, L.; Liu, B.; Zhang, X.; Gao, H.; Jin, Z.; Chi, Y. R. Enantioselective Indole N–H Functionalization Enabled by Addition of Carbene Catalyst to Indole Aldehyde at Remote Site. ACS Catal. 2019, 9, 10971–10976.
- 8 Zhang, L.; Wang, Y. NHC-Catalyzed N-H functionalization/Cycloaddition Reaction of Indole Aldehyde and Ketone: A DFT perspective. Comput. Theor. Chem. 2023, 1220, 114007.
- 9 Yang, X.; Xie, Y.; Xu, J.; Ren, S.; Mondal, B.; Zhou, L.; Tian, W.; Zhang, X.; Hao, L.; Jin Z.; Chi, Y. R. Carbene-Catalyzed Activation of Remote Nitrogen Atoms of (Benz)imidazole-Derived Aldimines for Enantioselective Synthesis of Heterocycles. Angew. Chem. Int. Ed. 2021, 60, 7906–7912.
- 10 Balanna, K.; Madica, K.; Mukherjee, S.; Ghosh, A.; Poisson, T.; Besset, T.; Jindal, G.; Biju, A. T. N-Heterocyclic Carbene-Catalyzed Formal [6+2] Annulation Reaction via Cross-Conjugated Aza-Trienolate Intermediates. Chem. Eur. J. 2019, 26, 818–822.
- 11 Liu, Y.; Luo, G.; Yang, X.; Jiang, S.; Xue, W.; Chi, Y. R.; Jin, Z. Carbene-Catalyzed Enantioselective Aromatic N-Nucleophilic Addition of Heteroarenes to Ketones. Angew. Chem. Int. Ed. 2019, 59, 442–448.
- 12 Wang, C.; Li, Z.; Zhang, J.; Hui, X.-P. Asymmetric N-alkylation of Indoles with Isatins Catalyzed by N-Heterocyclic Carbene: Efficient Synthesis of Functionalized Cyclic N,O-Aminal Indole Derivatives. Org. Chem. Front. 2020, 7, 1647–1652.
- 13 Peng, Q.; Li, S.-J.; Zhang, B.; Guo, D.; Lan, Y.; Wang, J. N-Heterocyclic Carbene-Catalyzed Enantioselective Hetero-[10 + 2] Annulation. Commun. Chem. 2020, 3, 177.
- 14 Ji, H.; Zou, J.; Mou, C.; Liu, Y.; Ren, S.-C.; Chi, Y. R. NHC-Catalyzed [12+2] Reaction of Polycyclic Arylaldehydes for Access to Indole Derivatives. Chem. Commun. 2023, 59, 6351–6354.
- 15 Ren, X.; Duan, X.-Y.; Li, Y.; Li, Y.; Li, J.; Qi, J. Highly Enantioselective Construction of the Polycyclic Piperazin-2-Ones via NHC-Catalyzed [12 + 2] Cycloadditions. Org. Lett. 2023, 25, 7917–7922.
- 16 Zhao, J.; Zheng, X.; Gao, Y. S.; Mao, J.; Wu, S.-X.; Yang, W.-L.; Luo, X.; Deng, W.-P. Organocatalytic Enantioselective [8+4] Cycloadditions of Isobenzofulvenes for the Construction of Bicyclo[4.2.1]nonanes. Chin. J. Chem. 2021, 39, 3129–3114.
- 17(a) Bera, S. G.; Daniliuc, C.; Studer, A. Oxidative N-Heterocyclic Carbene Catalyzed Dearomatization of Indoles to Spirocyclic Indolenines with a Quaternary Carbon Stereocenter. Angew. Chem. Int. Ed. 2017, 56, 7402–7406; (b) Breuers, C. B. J.; Daniliuc, C. G.; Studer, A. Dearomatizing Cyclization of 2-Iodoindoles by Oxidative NHC Catalysis to Access Spirocyclic Indolenines and Oxindoles Bearing an All Carbon Quaternary Stereocenter. Org. Lett. 2022, 24, 4960–4964; (c) Breuers, C. B. J.; Daniliuc, C. G.; Studer, A. Organocatalytic, Oxidative N-Heterocyclic Carbene-Catalyzed Intramolecular Friedel−Crafts Alkylation of Indoles for the Synthesis of Spirocyclic Indolenines. Org. Lett. 2022, 24, 5314–5318.