Interfacial Microenvironment Engineering Based on Ordered TiO2 Porous Films for Enhanced Visible Light Driven Photocatalysis
ZhaoYue Tan
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorXi Chen
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorZhiping Liu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJingYu Lu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Xia Sheng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Xinjian Feng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorZhaoYue Tan
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorXi Chen
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorZhiping Liu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJingYu Lu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Xia Sheng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Xinjian Feng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Visible-light-driven photocatalysis has great potential in environmental remediation and organic synthesis. Rational design and regulation of the reaction interfacial microenvironment is critical for photocatalytic performance, yet challenging. We report here a highly efficient photocatalytic system based on hydrophobic TiO2 porous (H-OTP) film for visible-light-driven dye-sensitized photo-oxidation. Such interface architecture design enhances the adsorption capability of organic dyes and enables the formation of air trapped triphase reaction interface microenvironment as confirmed via three-dimensional (3D) laser scanning confocal microscopy. Based on this interface architecture, the concentrations of O2 and organic molecule at the local reaction zone are both significantly increased, which promotes the generation of reactive oxygen species (•O2− and •OH), and enhances the photocatalytic performance in terms of both kinetics and organic mineralization efficiency. This study highlights the importance of interface microenvironment design and reveals an effective way to develop highly efficient photocatalytic systems.
Supporting Information
Filename | Description |
---|---|
cjoc202500086-sup-0001-supinfo.pdfPDF document, 1.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Peydayesh, M.; Suter, M. K.; Bolisetty, S.; Boulos, S.; Handschin, S.; Nyström, L.; Mezzenga, R. Amyloid fibrils aerogel for sustainable removal of organic contaminants from water. Adv. Mater. 2020, 32, 1907932; (b) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301−310; (c) Baigorria, E.; Galhardi, J. A.; Fraceto, L. F. Trends in polymers networks applied to the removal of aqueous pollutants: A review. J. Cleaner Prod. 2021, 295, 126451.
- 2(a) Ji, X.; Wang, H.; Wang, H.; Zhao, T.; Page, Z. A.; Khashab, N. M.; Sessler, J. L. Removal of organic micropollutants from water by macrocycle-containing covalent polymer networks. Angew. Chem. Int. Ed. 2020, 59, 23402−23412; (b) Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541−6569; (c) Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B 2004, 49, 1−14.
- 3(a) Ghosh, S.; Kouamé, N. A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P.-H.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505–511; (b) Grabstanowicz, L. R.; Gao, S.; Li, T.; Rickard, R. M.; Rajh, T.; Liu, D.-J.; Xu, T. Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem. 2013, 52, 3884–3890; (c) Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.
- 4(a) Watanabe, T.; Takizawa, T.; Honda, K. Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J. Phys. Chem. A 1977, 81, 1845−1851; (b) Tran, D.-T.; Nguyen, T.-H.; Vu, T.-P.-T.; Dang, V.-Q.; Le, T.-T.-T.; Van, H.-T. Cu-ZnO/CdS/rGO tertiary heterojunction for improved photocatalytic degradation of synthetic dyes using visible light. J. Water Process. Eng. 2024, 57, 104687; (c) Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473–486; (d) Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219; (e) Yang, J.; Chen, C.; Ji, H.; Ma, W.; Zhao, J. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 2005, 109, 21900.
- 5(a) Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748; (b) Li, X.; Pang, S.; Zhang, Y.; Fu, J.; He, G.; Song, B.; Peng, D.; Zhang, X.; Jiang, L. Efficient flow synthesis of aspirin within 2D sub-nanoconfined laminar annealed graphene oxide membranes. Adv. Mater. 2023, 36, 2310954; (c) Hsieh, B.-J.; Tsai, M.-C.; Pan, C.-J. Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst. NPG Asia Mater. 2017, 9, e403; (d) Li, C.; Zhao, J. Investigation of differences in the protein transport capability of homochiral nanochannels. Supramol. Mater. 2023, 2, 10039.
- 6(a) Fu, J.; Pang, S.; Zhang, Y.; Li, X.; Song, B.; Peng, D.; Zhang, X.; Jiang, L. 2D graphene oxide membrane nanoreactors for rapid directional flow ring-opening reactions with dominant same-configuration products. Adv. Sci. 2024, 11, 2308388; (b) Fu, Q.; Bao, X. Confined microenvironment for catalysis control. Nat. Catal. 2019, 2, 834–836; (c) Pang, S.; Peng, D.; Hao, Y.; Song, B.; Zhang, X.; Jiang, L. Regulating interlayer spacing of aminated graphene oxide membranes for efficient flow reactions. Matter 2023, 6, 1173–1187; (d) Liu, P.; Gao, X.-Y.; Zhang, L.-J. Osmotic-enhanced-photoelectrochemical hydrogen production based on nanofluidics. CCS Chem. 2023, 5, 2012–2022; (e) Go, M.; Hong, I.; Lee, D. Ultrabroadband absorptive refractory plasmonics for photocatalytic hydrogen evolution reactions. NPG Asia Mater. 2024, 16, 4.
- 7(a) Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227; (b) Li, J.; Chen, G.; Zhu, Y.; Liang, Z.; Pei, A.; Wu, C.-L.; Wang, H.; Lee, H. R.; Liu, K.; Chu, S.; Cui, Y. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600; (c) Sheng, X.; Liu, Z.; Zeng, R.; Chen, L.; Feng, X.; Jiang, L. Enhanced photocatalytic reaction at air–liquid–solid Joint interfaces. J. Am. Chem. Soc. 2017, 139, 12402–12405; (d) Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.
- 8 Mi, L.; Yu, J.; He, F.; Jiang, L.; Wu, Y.; Yang, L.; Han, X.; Li, Y.; Liu, A.; Wei, W.; Zhang, Y.; Tian, Y.; Liu, S.; Jiang, L. Boosting gas involved reactions at nanochannel reactor with joint gas–solid–liquid interfaces and controlled wettability. J. Am. Chem. Soc. 2017, 139, 10441–10446.
- 9(a) Shi, R.; Guo, J.; Zhang, X.; Waterhouse, G. I. N.; Han, Z.; Zhao, Y.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028; (b) Li, L.; Chen, J.; Mosali, V. S. S.; Liang, Y.; Bond, A. M.; Gu, Q.; Zhang, J. Hydrophobicity graded gas diffusion layer for stable electrochemical reduction of CO2. Angew. Chem. Int. Ed. 2022, 61, e202208534; (c) Tang, K.; Hu, H.; Xiong, Y.; Chen, L.; Zhang, J.; Yuan, C.; Wu, M. Hydrophobization engineering of the air–cathode catalyst for improved oxygen diffusion towards efficient zinc–air batteries. Angew. Chem. Int. Ed. 2022, 61, e202208534; (d) Yu, C.; Zhang, P.; Wang, J.; Jiang, L. Superwettability of gas bubbles and its application: From bioinspiration to advanced materials. Adv. Mater. 2017, 29, 1703053; (e) Shen, T.-H.; Spillane, L.; Peng, J.; Shao-Horn, Y.; Tileli, V. Switchable wetting of oxygen-evolving oxide catalysts. Nat. Catal 2021, 5, 30–36; (f) Song, Z.; Xu, C.; Sheng, X.; Feng, X.; Jiang, L. Utilization of peroxide reduction reaction at air–liquid–solid joint interfaces for reliable sensing system construction. Adv. Mater. 2017, 30, 1701473.
- 10 Zhou, H.; Sheng, X.; Xiao, J.; Ding, Z.; Wang, D.; Zhang, X.; Liu, J.; Wu, R.; Feng, X.; Jiang, L. Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering. J. Am. Chem. Soc. 2020, 142, 2738–2743.
- 11(a) Guo, L.; You, S.; Wu, C.; Liu, F.; Zhang, R.; Wang, X. Interconnected periodic macroporous NaNbO3 for high-efficiency solar-driven photocatalytic hydrogen evolution. Inorg. Chem. 2024, 63, 11832–11841; (b) Wen, F.; Liu, W. Three-dimensional ordered macroporous materials for photocatalysis: design and applications. J. Mater. Chem. A 2021, 9, 18129–18147.
- 12 Li, F.; Jing, J.; Li, J.; Li, S.; Ye, S.; Song, X.; Zhan, Z.; Zhang, Y. Fabrication of ZnO-SnO2 heterojunction inverse opal photonic balls for chemiresistive acetone sensing. Sens. Actuators, B 2024, 400, 134887.
- 13 Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 1998, 102, 5845.
- 14 Qu, P.; Zhao, J.; Shen, T.; Hidaka, H. TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. J. Mol. Catal. A: Chem. 1998, 129, 257.
- 15 Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants. 3. degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: Evidence for the need of substrate adsorption on TiO2 Particles. Environ. Sci. Technol. 1998, 32, 2394.
- 16(a) Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 2015, 115, 13051–13092; (b) Sun, J.; Liu, X. R.; Li, S.; He, P.; Li, W.; Gross, M. L. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nat. Commun. 2021, 12, 7270; (c) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.
- 17 Sun, C.; Wang, M.; Feng, Q.; Liu, W.; Xu, C. Surface-enhanced Raman scattering (SERS) study on Rhodamine badsorbed on different substrates. Russ. J. Phys. Chem. A 2015, 89, 291–296.
- 18 Grover, A.; Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kim, K.-H. Zn-Al layered double hydroxides intercalated with surfactant: Synthesis and applications for efficient removal of organic dyes. J. Cleaner Prod. 2019, 240, 118090.