Structural Factors Tuning Peptide Proton Transport via Self-Assembly Monolayers
Pan Qi
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorXiaobing Li
Shandong Police College, Jinan, Shandong, 250014 China
Search for more papers by this authorHouguo Fei
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorZijie Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Cunlan Guo
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]Search for more papers by this authorPan Qi
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorXiaobing Li
Shandong Police College, Jinan, Shandong, 250014 China
Search for more papers by this authorHouguo Fei
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorZijie Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Cunlan Guo
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Proton transport (PT) in solid-state materials is crucial for applications in energy conversion and protonic devices. Nevertheless, the highly complex and disordered structures of conventional proton-conducting materials, such as polymers and proteins, hinder a clear understanding of the mechanisms underlying PT, particularly the formation of hydrogen bond (H-bond) networks and their role in mediating PT. Here, we show that self-assembling monolayers (SAMs) of oligopeptides provide a promising platform for elucidating the key factors that modulate PT related H-bonds, including amide bond interactions, peptide sequence, and chain length. Combined with structural characterizations of SAMs, the electrical measurements under both direct and alternating current modes demonstrate that longer and more extended oligopeptide chains in SAMs result in an ordered molecular arrangement, leading to a more pronounced response of current density (J) to increasing relative humidity (RH). Moreover, this increase in molecular order also shifts the transition from electron-dominated to proton-dominated charge transport to a higher RH. The synergy between carrier concentration and mobility is a key factor contributing to the increase in J. This study not only elucidates the critical role of ordered H-bonds in PT but also expands the application of SAM technology in controlling molecular conformation and enhancing proton conduction.
Supporting Information
Filename | Description |
---|---|
cjoc202500159-sup-0001-supinfo.pdfPDF document, 2.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Lei, D.; Wang, Y.; Zhang, Q.; Wang, S.; Jiang, L.; Zhang, Z. High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites. Nat. Commun. 2025, 16, 754.
- 2 Martinelli, A.; Otero-Mato, J. M.; Garaga, M. N.; Elamin, K.; Rahman, S. M. H.; Zwanziger, J. W.; Werner-Zwanziger, U.; Varela, L. M. A new solid-state proton conductor: The salt hydrate based on imidazolium and 12-tungstophosphate. J. Am. Chem. Soc. 2021, 143, 13895–13907.
- 3 Wahab, O. J.; Daviddi, E.; Xin, B.; Sun, P. Z.; Griffin, E.; Colburn, A. W.; Barry, D.; Yagmurcukardes, M.; Peeters, F. M.; Geim, A. K.; Lozada-Hidalgo, M.; Unwin, P. R. Proton transport through nanoscale corrugations in two-dimensional crystals. Nature 2023, 620, 782-786.
- 4 Zhang, Z.; Liang, L.; Feng, J.; Hou, G.; Ren, W. Significant enhancement of proton conductivity in solid acid at the monolayer limit. Nat. Commun. 2024, 15, 2706.
- 5 Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. A molecular mediator for reductive concerted proton-electron transfers via electrocatalysis. Science 2020, 369, 850–854.
- 6 Ono, K.; Ishizaki, M.; Kanaizuka, K.; Togashi, T.; Yamada, T.; Kitagawa, H.; Kurihara, M. Grain-boundary-free super-proton conduction of a solution-processed prussian-blue nanoparticle film. Angew. Chem. Int. Ed. 2017, 56, 5531–5535.
- 7 Fan, C.; Peng, Q.; Wu, H.; Shi, B.; Wang, X.; Ye, C.; Kong, Y.; Yin, Z.; Liu, Y.; Jiang, Z. Quantum dot intercalated robust covalent organic framework membrane for ultrafast proton conduction. J. Mater. Chem. A 2022, 10, 6616–6622.
- 8 Yang, Y.; Zhang, P.; Hao, L.; Cheng, P.; Chen, Y.; Zhang, Z. Grotthuss proton-conductive covalent organic frameworks for efficient proton pseudocapacitors. Angew. Chem. Int. Ed. 2021, 60, 21838–21845.
- 9 Sedgwick, A. C.; Wu, L.; Han, H.-H.; Bull, S. D.; He, X.-P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (esipt) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880.
- 10 Song, M.-K.; Namgung, S. D.; Suh, J. M.; Yoon, J. H.; Nam, K. T.; Kwon, J.-Y. Phenol-assisted electrochemical metallization of peptide-based bimodal memristors. ACS Mater. Lett. 2024, 6, 275–280.
- 11 Lee, J.; Choe, I. R.; Kim, Y.-O.; Namgung, S. D.; Jin, K.; Ahn, H.-Y.; Sung, T.; Kwon, J.-Y.; Lee, Y.-S.; Nam, K. T. Proton conduction in a tyrosine-rich peptide/manganese oxide hybrid nanofilm. Adv. Funct. Mater. 2017, 27, 1702185.
- 12 Jia, W.; Wu, P. Fast proton conduction in denatured bovine serum albumin-coated nafion membranes. ACS Appl. Mater. Interfaces 2018, 10, 39768–39776.
- 13 Nandi, R.; Agam, Y.; Amdursky, N. A protein-based free-standing proton-conducting transparent elastomer for large-scale sensing applications. Adv. Mater. 2021, 33, 2101208.
- 14 Amdursky, N.; Wang, X.; Meredith, P.; Bradley, D. D. C.; Stevens, M. M. Long-range proton conduction across free-standing serum albumin mats. Adv. Mater. 2016, 28, 2692–2698.
- 15 Mejias, S. H.; López-Martínez, E.; Fernandez, M.; Couleaud, P.; Martin-Lasanta, A.; Romera, D.; Sanchez-Iglesias, A.; Casado, S.; Osorio, M. R.; Abad, J. M.; González, M. T.; Cortajarena, A. L. Engineering conductive protein films through nanoscale self-assembly and gold nanoparticles doping. Nanoscale 2021, 13, 6772–6779.
- 16
Amdursky, N.; Głowacki, E. D.; Meredith, P. Macroscale biomolecular electronics and ionics. Adv. Mater. 2018, 31, 1802221.
10.1002/adma.201802221 Google Scholar
- 17 Jia, M.; Kim, J.; Nguyen, T.; Duong, T.; Rolandi, M. Natural biopolymers as proton conductors in bioelectronics. Biopolymers 2021, 112, 23433.
- 18 Reali, M.; Saini, P.; Santato, C. Electronic and protonic transport in bio-sourced materials: A new perspective on semiconductivity. Mater. Adv. 2021, 2, 15–31.
- 19 Ma, C.; Dong, J.; Viviani, M.; Tulini, I.; Pontillo, N.; Maity, S.; Zhou, Y.; Roos, W. H.; Liu, K.; Herrmann, A.; Portale, G. De novo rational design of a freestanding, supercharged polypeptide, proton-conducting membrane. Sci. Adv. 2020, 6, eabc0810.
- 20 Liu, J.; Sun, J.; Yang, F.; Tian, Z. Y.; Wan, C.; Yin, F.; Ye, Y.; Li, Z. In-depth structural analysis of a stapled pentapeptide and its assembly into straight α-helices. Small 2025, 21, 2406214.
- 21 Sun, J.; Tian, Z.-Y.; Liu, J.; Wan, C.; Dai, C.; Liu, Z.; Xing, Y.; Wu, Y.; Hou, Z.; Han, W.; Yin, F.; Ye, Y.; Li, Z. Intramolecular ch⋯π attraction mediated conformational polymorphism of constrained helical peptides. Chem. Sci. 2024, 15, 14264–14272.
- 22 Jiang, T.; Zeng, B.-F.; Zhang, B.; Tang, L. Single-molecular protein- based bioelectronics via electronic transport: Fundamentals, devices and applications. Chem. Soc. Rev. 2023, 52, 5968–6002.
- 23 Zhang, Y.; Liu, L.; Tu, B.; Cui, B.; Guo, J.; Zhao, X.; Wang, J.; Yan, Y. An artificial synapse based on molecular junctions. Nat. Commun. 2023, 14, 247.
- 24 Samajdar, R.; Meigooni, M.; Yang, H.; Li, J.; Liu, X.; Jackson, N. E.; Mosquer, M. A.; Tajkhorshid, E.; Schroeder, C. M. Secondary structure determines electron transport in peptides. Proc. Natl. Acad. Sci. 2024, 121, e2403324121.
- 25 Fan, J.; Xu, Z.; Qi, P.; Guo, C. Peptide-based electrical array sensor for discriminating heavy metal ions. Anal. Chem. 2024, 96, 12147–12154.
- 26 Guo, J.; Qi, P.; Zhang, Y.; Guo, C. Tuning charge transport of oligopeptide junctions via interfacial amino acids. Chin. J. Chem. 2023, 41, 2113–2118.
- 27 Guo, C.; Yu, X.; Refaely-Abramson, S.; Sepunaru, L.; Bendikov, T.; Pecht, I.; Kronik, L.; Vilan, A.; Sheves, M.; Cahen, D. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proc. Natl. Acad. Sci. 2016, 113, 10785-10790.
- 28
Bai, Y.; Meng, H.; Li, Z.; Wang, Z. L. Degradable piezoelectric biomaterials for medical applications. MedMat 2024, 1, 40–49.
10.1097/mm9.0000000000000002 Google Scholar
- 29 Mostert, A. B. The importance of water content on the conductivity of biomaterials and bioelectronic devices. J. Mater. Chem. B 2022, 10, 7108-7121.
- 30 Mondal, S.; Agam, Y.; Nandi, R.; Amdursky, N. Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers. Chem. Sci. 2020, 11, 3547–3556.
- 31 Silberbush, O.; Amit, M.; Roy, S.; Ashkenasy, N. Significant enhancement of proton transport in bioinspired peptide fibrils by single acidic or basic amino acid mutation. Adv. Funct. Mater. 2017, 27, 1604624.
- 32 Ordinario, D. D.; Phan, L.; Walkup, W. G. t.; Jocson, J.-M.; Karshalev, E.; Hüsken, N.; Gorodetsky, A. A. Bulk protonic conductivity in a cephalopod structural protein. Nat. Chem. 2014, 6, 596–602.
- 33 Bardelmeyer, G. H. Electrical conduction in hydrated collagen. I. Conductivity mechanisms. Biopolymers 1973, 12, 2289–2302.
- 34 Zhong, C.; Deng, Y.; Roudsari, A. F.; Kapetanovic, A.; Anantram, M. P.; Rolandi, M. A polysaccharide bioprotonic field-effect transistor. Nat. Commun. 2011, 2, 476.
- 35 Amit, M.; Appel, S.; Cohen, R.; Cheng, G.; Hamley, I. W.; Ashkenasy, N. Hybrid proton and electron transport in peptide fibrils. Adv. Funct. Mater. 2014, 24, 5873–5880.
- 36 Powell, M. R.; Rosenberg, B. The nature of the charge carriers in solvated biomacromolecules. Bioenergetics 1970, 1, 493–509.
- 37 Turetta, N.; Stoeckel, M. A.; Furlan de Oliveira, R.; Devaux, F.; Greco, A.; Cendra, C.; Gullace, S.; Gicevicius, M.; Chattopadhyay, B.; Liu, J.; Schweicher, G.; Sirringhaus, H.; Salleo, A.; Bonn, M.; Backus, E. H. G.; Geerts, Y. H.; Samori, P. High-performance humidity sensing in pi-conjugated molecular assemblies through the engineering of electron/proton transport and device interfaces. J. Am. Chem. Soc. 2022, 144, 2546–2555.
- 38 Chen, X.; Salim, T.; Zhang, Z.; Yu, X.; Volkova, I.; Nijhuis, C. A. Large increase in the dielectric constant and partial loss of coherence increases tunneling rates across molecular wires. ACS Appl. Mater. Interfaces 2020, 12, 45111–45121.
- 39 Tian, L.; Song, X.; Yu, X.; Hu, W. Modulated rectification of carboxylate-terminated self-assembled monolayer junction by humidity and alkali metal ions: The coupling and asymmetric factor matter. J. Phys. Chem. C 2021, 125, 21614–21623.
- 40 Ai, Y.; Kovalchuk, A.; Qiu, X.; Zhang, Y.; Kumar, S.; Wang, X.; Kuhnel, M.; Norgaard, K.; Chiechi, R. C. In-place modulation of rectification in tunneling junctions comprising self-assembled monolayers. Nano Lett. 2018, 18, 7552–7559.
- 41 Zhang, X.; McGill, S. A.; Xiong, P. Origin of the humidity sensitivity of al/alo(x)/mha/au molecular tunnel junctions. J. Am. Chem. Soc. 2007, 129, 14470–14474.
- 42 Chen, J.; Kim, M.; Gathiaka, S.; Cho, S. J.; Kundu, S.; Yoon, H. J.; Thuo, M. M. Understanding keesom interactions in monolayer-based large-area tunneling junctions. J. Phys. Chem. Lett. 2018, 9, 5078–5085.
- 43 Schweitzer-Stenner, R.; Pecht, I.; Guo, C. Orientation of oligopeptides in self-assembled monolayers inferred from infrared reflection-absorption spectroscopy. J. Phys. Chem. B 2019, 123, 860–868.
- 44 Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747.
- 45 Chen, J.; Chang, B.; Oyola-Reynoso, S.; Wang, Z.; Thuo, M. M. Quantifying gauche defects and phase evolution in self-assembled monolayers through sessile drops. ACS Omega 2017, 2, 2072–2084.
- 46 Chen, J.; Wang, Z.; Oyola-Reynoso, S.; Gathiaka, S. M.; Thuo, M. Limits to the effect of substrate roughness or smoothness on the odd-even effect in wetting properties of n-alkanethiolate monolayers. Langmuir 2015, 31, 7047–7054.
- 47 Du, C.; Wang, Z.; Chen, J.; Martin, A.; Raturi, D.; Thuo, M. Role of nanoscale roughness and polarity in odd-even effect of self-assembled monolayers. Angew. Chem. Int. Ed. 2022, 61, 202205251.
- 48 Vogt, L. A. Electronic structure predictions for properties of organic materials. PHD thesis, Harvard University, Cambridge, Massachusetts, 2012.
- 49 Li, X.; Cazade, P.-A.; Qi, P.; Thompson, D.; Guo, C. The role of externally-modulated electrostatic interactions in amplifying charge transport across lysine-doped peptide junctions. Chin. Chem. Lett. 2023, 34, 107466.
- 50 Cao, L.; Wu, H.; Cao, Y.; Fan, C.; Zhao, R.; He, X.; Yang, P.; Shi, B.; You, X.; Jiang, Z. Weakly humidity-dependent proton-conducting cof membranes. Adv. Mater. 2020, 32, e2005565.
- 51 Amit, M.; Roy, S.; Deng, Y.; Josberger, E.; Rolandi, M.; Ashkenasy, N. Measuring proton currents of bioinspired materials with metallic contacts. ACS Appl. Mater. Interfaces 2018, 10, 1933–1938.
- 52 Sangeeth, C. S. S.; Wan, A.; Nijhuis, C. A. Equivalent circuits of a self-assembled monolayer-based tunnel junction determined by impedance spectroscopy. J. Am. Chem. Soc. 2014, 136, 11134–11144.
- 53 Ha, D. H.; Nham, H.; Yoo, K.-H.; So, H.-m.; Lee, H.-Y.; Kawai, T. Humidity effects on the conductance of the assembly of DNA molecules. Chem. Phys. Lett. 2002, 355, 405–409.