Recent Advances in Urea Electrocatalysis: Applications, Materials and Mechanisms†
Chu Zhang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
These authors contribute equally to this work.
Search for more papers by this authorShijie Chen
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
These authors contribute equally to this work.
Search for more papers by this authorLiwei Guo
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
These authors contribute equally to this work.
Search for more papers by this authorZeyu Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorChunshuang Yan
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorCorresponding Author
Chade Lv
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
E−mail: [email protected]Search for more papers by this authorChu Zhang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
These authors contribute equally to this work.
Search for more papers by this authorShijie Chen
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
These authors contribute equally to this work.
Search for more papers by this authorLiwei Guo
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
These authors contribute equally to this work.
Search for more papers by this authorZeyu Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorChunshuang Yan
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorCorresponding Author
Chade Lv
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
E−mail: [email protected]Search for more papers by this authorDedicated to the Special Issue of Emerging Investigators in 2024.
Comprehensive Summary
Urea plays a vital role in human society, which has various applications in organic synthesis, medicine, materials chemistry, and other fields. Conventional industrial urea production process is energy−intensive and environmentally damaging. Recently, electrosynthesis offers a greener alternative to efficient urea synthesis involving coupling CO2 and nitrogen sources at ambient conditions, which affords an achievable way for diminishing the energy consumption and CO2 emissions. Additionally, urea electrolysis, namely the electrocatalytic urea oxidation reaction (UOR), is another emerging approach very recently. When coupling with hydrogen evolution reaction, the UOR route potentially utilizes 93% less energy than water electrolysis. Although there have been many individual reviews discussing urea electrosynthesis and urea electrooxidation, there is a critical need for a comprehensive review on urea electrocatalysis. The review will serve as a valuable reference for the design of advanced electrocatalysts to enhance the electrochemical urea electrocatalysis performance. In the review, we present a thorough review on two aspects: the electrocatalytic urea synthesis and urea oxidation reaction. We summarize in turn the recently reported catalyst materials, multiple catalysis mechanisms and catalyst design principles for electrocatalytic urea synthesis and urea electrolysis. Finally, major challenges and opportunities are also proposed to inspire further development of urea electrocatalysis technology.
Key Scientists
For urea electrosynthesis, Furuya et al. firstly investigated the electrochemical coreduction of CO2 and NO3−/NO2− using gas-diffusion electrodes in 1995. Then, Wang et al. effectively achieved C—N bond formation and urea synthesis on PdCu alloy nanoparticles in 2020. Shortly, Yan and Yu et al. proposed the formation of *CO2NO2 from *NO2 and *CO2 intermediates at early stage on In(OH)3 electrocatalyst in 2021, and employed defect engineering strategy to facilitate the *CO2NH2 protonation in 2022. Amal et al. Investigated the role that Cu-N-C coordination plays for both the CO2RR and NO3RR. After that, Zhang's group developed In-based electrocatalysts with artificial frustrated Lewis pairs for urea, and they offered a systematic screening approach for catalyst design in urea electrosynthesis in 2023. And sargent et al. reported a strategy that increased selectivity to urea using a hybrid catalyst.
For urea electrooxidation, Stevenson et al. investigated the effect of Sr substitution toward the urea oxidation reaction. Wang et al. provided insights into the urea electrooxidation process using a β-Ni(OH)2 electrode and Qiao et al. elucidated a two-stage reaction pathway for UOR in 2021.
References
- 1 De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.
- 2 Lv, C.; Jia, N.; Qian, Y.; Wang, S.; Wang, X.; Yu, W.; Liu, C.; Pan, H.; Zhu, Q.; Xu, J.; Tao, X.; Ping Loh, K.; Xue, C.; Yan, Q. Ammonia Electrosynthesis with a Stable Metal-Free 2D Silicon Phosphide. Small 2023, 19, 2205959.
- 3 Li, S.; Zou, Y.; Chen, C.; Wang, S.; Liu, Z. Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chin. Chem. Let. 2024, 35, 109147.
- 4 Li, D.; Zhao, Y.; Miao, Y.; Zhou, C.; Zhang, L.; Wu, L.; Zhang, T. Accelerating Electron-Transfer Dynamics by TiO2-Immobilized Reversible Single-Atom Copper for Enhanced Artificial Photosynthesis of Urea. Adv. Mater. 2022, 34, 2207793.
- 5
Zhao, Y.; Shi, R.; Bian, X.; Zhou, C.; Zhao, Y.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH3 Production Rates? Adv. Sci. 2019, 6, 8213.
10.1002/advs.201802109 Google Scholar
- 6 Wang, H.; Chen, Z.; Shang, Y.; Lv, C.; Zhang, X.; Li, F.; Huang, Q.; Liu, X.; Liu, W.; Zhao, L.; Ye, L.; Xie, H.; Jin, X. Boosting Carrier Separation on a BiOBr/Bi4O5Br2 Direct Z-Scheme Heterojunction for Superior Photocatalytic Nitrogen Fixation. ACS Catal. 2024, 14, 5779−5787.
- 7 Lv, C.; Liu, J.; Lee, C.; Zhu, Q.; Xu, J.; Pan, H.; Xue, C.; Yan, Q. Emerging p−Block−Element−Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS Nano 2022, 16, 15512–15527.
- 8 Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.
- 9 Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; Liu, J.; Song, L.; Chen, G.; Yan, Q.; Yu, G. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.
- 10 Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Mechanism of C−N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 2022, 13, 5471.
- 11 Li, J.; Wang, S.; Sun, S.; Wu, X.; Zhang, B.; Feng, L. A review of hetero−structured Ni−based active catalysts for urea electrolysis. J. Mater. Chem. A 2022, 10, 9308–9326.
- 12 Kim, J.; Kim, M. C.; Han, S. S.; Cho, K. Accessible Ni-Fe-Oxalate Framework for Electrochemical Urea Oxidation with Radically Enhanced Kinetics. Adv. Funct. Mater. 2024, 34, 2315625.
- 13 Gao, X.; Zhang, S.; Wang, P.; Jaroniec, M.; Zheng, Y.; Qiao, S. Urea catalytic oxidation for energy and environmental applications. Chem. Soc. Rev. 2024, 53, 1552–1591.
- 14 Ding, H.; Zhao, Z.; Zeng, H.; Li, X.; Cui, K.; Zhang, Y.; Chang, X. Heterojunction−Induced Local Charge Redistribution Boosting Energy− Saving Hydrogen Production via Urea Electrolysis. ACS Mater. Lett. 2024, 6, 1029–1041.
- 15
Zhong, Y.; Xiong, H.; Low, J.; Long, R.; Xiong, Y. Recent progress in electrochemical C–N coupling reactions. eScience 2023, 3, 100086.
10.1016/j.esci.2022.11.002 Google Scholar
- 16 Yang, W.; Chen, S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 2020, 393, 124726.
- 17 Wang, D.; Botte, G. G. In Situ X−Ray Diffraction Study of Urea Electrolysis on Nickel Catalysts. ECS Electrochem. Lett. 2014, 3, H29.
- 18 Zhao, X.; Li, J.; Zhang, J.; Yang, J.-H. Urea electrooxidation: Research progress and application of supported nickel−based catalysts. Ionics 2023, 29, 2969−2987.
- 19 Zhu, B.; Liang, Z.; Zou, R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small 2020, 16, 1906133.
- 20 Singh, R. K.; Rajavelu, K.; Montag, M.; Schechter, A. Advances in Catalytic Electrooxidation of Urea: A Review. Energy Technol. 2021, 9, 2100017.
- 21 Senthilkumar; N.; Kumar; G.; Gnana; Manthiram; Materials, A. J. A. E. 3D Hierarchical Core−Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells. Adv. Energy. Mater. 2018, 8, 1702207.
- 22 Xie, A.; Du, J.; Zhang, J.; Xiong, Z.; Shao, F.; Luo, S. A High−Performance Nonenzymatic Urea Sensor Based on Graphene−NiO−Polyaniline. J. Electrochem. Soc. 2019, 166, B456.
- 23 Shibata, M.; Yoshida, K.; Furuya, N. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu−loaded gas−diffusion electrode. Electroanal. Chem. 1995, 387, 143−145.
- 24 Shibata, M.; Furuya, N. Simultaneous reduction of carbon dioxide and nitrate ions at gas−diffusion electrodes with various metallophthalocyanine catalysts. Electrochim. Acta 2003, 48, 3953−3958.
- 25 Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Lett. 2022, 7, 284−291.
- 26 Wang, Y.; Xia, S.; Cai, R.; Zhang, J.; Yu, C.; Cui, J.; Zhang, Y.; Wu, J.; Wu, Y. Dynamic Reconstruction of Two-Dimensional Defective Bi Nanosheets for Efficient Electrocatalytic Urea Synthesis. Angew. Chem. Int. Ed. 2024, 63, e202318589.
- 27
Geng, J.; Ji, S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.; Zhang, H. Ambient Electrosynthesis of Urea with Nitrate and Carbon Dioxide over Iron-Based Dual-Sites. Angew. Chem. Int. Ed. 2023, 62, e2022109.
10.1002/anie.202210958 Google Scholar
- 28 Feng, Y.; Yang, H.; Zhang, Y.; Huang, X.; Li, L.; Cheng, T.; Shao, Q. Te−Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction. Nano Lett. 2020, 20, 8282−8289.
- 29 Li, Y.; Zheng, S.; Liu, H.; Xiong, Q.; Yi, H.; Yang, H.; Mei, Z.; Zhao, Q.; Yin, Z.-W.; Huang, M.; Lin, Y.; Lai, W.; Dou, S.-X.; Pan, F.; Li, S. Sequential co−reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nat. Commun. 2024, 15, 176.
- 30 Zhang, S.; Jin, M.; Xu, H.; Zhang, X.; Shi, T.; Ye, Y.; Lin, Y.; Zheng, L.; Wang, G.; Zhang, Y.; Yin, H.; Zhang, H.; Zhao, H. An oxygen−coordinated cobalt single−atom electrocatalyst boosting urea and urea peroxide production. Energy Environ. Sci. 2024, 17, 1950–1960.
- 31 Kong, Y.; Kong, H.; Lv, C.; Chen, G. Engineering Reductive Iron on a Lay-ered Double Hydroxide Electrocatalyst for Facilitating Nitrogen Reduction Reaction. Adv. Mater. Interfaces 2022, 9, 2102242
- 32 Liu, W.; Yang, N.; Wei, Y.; Yu, Y.; Chen, J.; Wei, M.; Huang, Y.; Li, X.; Zhang, L.; Saleem, F.; Zhang, W.; Zhang, H.; Huo, F. Coupling Au with BO matrix induced by Closo−boron cluster for electrochemical synthesis of ammonia. J. Energy Chem. 2024, 93, 471−477.
- 33 Li, S.; Li, Y.; Bai, H.; Zhou, D.; Liu, Y.; Liu, R.; Han, B.; Liu, X.; Li, F. Penta−coordinated aluminum species: Anchoring Au single atoms for photocatalytic CO2 reduction. Appl. Catal. B-Environ. Energy 2024, 345, 123703.
- 34 Xiong, W.; Zhou, M.; Li, H.; Ding, Z.; Zhang, D.; Lv, Y. Electrocatalytic ammonia synthesis catalyzed by mesoporous nickel oxide nanosheets loaded with Pt nanoparticles. Chin. J. Catal. 2022, 43, 1371–1378.
- 35 Centi, G.; Perathoner, S. Making chemicals from the air: the new frontier for hybrid electrosyntheses in artificial tree-like devices. Green Chem. 2024, 26, 15–41.
- 36 Jiang, M.; Zhu, M.; Wang, M.; He, Y.; Luo, X.; Wu, C.; Zhang, L.; Jin, Z. Review on Electrocatalytic Coreduction of Carbon Dioxide and Nitrogenous Species for Urea Synthesis. ACS Nano 2023, 17, 3209–3224.
- 37 Peng, X.; Zeng, L.; Wang, D.; Liu, Z.; Li, Y.; Li, Z.; Yang, B.; Lei, L.; Dai, L.; Hou, Y. Electrochemical C–N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem. Soc. Rev. 2023, 52, 2193–2237.
- 38 Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; Cheng, J.; Lin, H.; Jia, J.; Fu, X.; Wang, S. Oxygen Vacancy−Mediated Selective C–N Coupling toward Electrocatalytic Urea Synthesis. J. Am. Chem. Soc. 2022, 144, 11530−11535.
- 39 Huang, Y.; Wang, Y.; Liu, Y.; Ma, A.; Gui, J.; Zhang, C.; Yu, Y.; Zhang, B. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 2023, 453, 139836.
- 40 Lv, C.; Lee, C.; Zhong, L.; Liu, H.; Liu, J.; Yang, L.; Yan, C.; Yu, W.; Hng, H.; Qi, Z.; Song, L.; Li, S.; Loh, K. P.; Yan, Q.; Yu, G. A Defect Engineered Electrocatalyst that Promotes High−Efficiency Urea Synthesis under Ambient Conditions. ACS Nano 2022, 16, 8213−8222.
- 41 Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; Yan, D.; Xie, C.; Zou, Y.; Wang, Y.; Chen, R.; Huo, J.; Li, Y.; Cheng, J.; Su, H.; Zhao, X.; Cheng, W.; Liu, Q.; Lin, H.; Luo, J.; Chen, J.; Dong, M.; Cheng, K.; Li, C.; Wang, S. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717−724.
- 42 Li, D.; Xu, N.; Zhao, Y.; Zhou, C.; Zhang, L. P.; Wu, L. Z.; Zhang, T., A Reliable and Precise Protocol for Urea Quantification in Photo/Electrocatalysis. Small Methods 2022, 6, e2200561.
- 43
Li, D.; Xu, N.; Zhao, Y.; Shi, R.; Zhou, C.; Zhang, L. P.; Zhang, T. Recommended Practices for More Accessible Quantification of Low-Concentration Aqueous Phase Products in Photo/Electrocatalytic CO2/N2 Fixation. Adv. Energy Mater. 2023, 14, 2303885.
10.1002/aenm.202303885 Google Scholar
- 44 Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Lett. 2021, 7, 284−291.
- 45 Luo, Y.; Xie, K.; Ou, P.; Lavallais, C.; Peng, T.; Chen, Z.; Zhang, Z.; Wang, N.; Li, X.; Grigioni, I.; Liu, B.; Sinton, D.; Dunn, J.; Sargent, E. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat. Catal. 2023, 6, 939−948.
- 46 Xu, M.; Wu, F.; Zhang, Y.; Yao, Y.; Zhu, G.; Li, X.; Chen, L.; Jia, G.; Wu, X.; Huang, Y.; Gao, P.; Ye, W. Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single−atom alloy. Nat. Commun. 2023, 14, 6994.
- 47 Zhao, H.; Yuan, Z. Y. Insights into Transition Metal Phosphate Materials for Efficient Electrocatalysis. ChamCatChem 2020, 12, 3797–3810.
- 48 Zhao, H.; Yuan, Z. Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catal. Sci. Technol. 2017, 7, 330–347.
- 49 Xia, Y.; Campbell, C.; Roldan Cuenya, B.; Mavrikakis, M. Introduction: Advanced Materials and Methods for Catalysis and Electrocatalysis by Transition Metals. Chem. Rev. 2021, 121, 563–566.
- 50 Murugavel, R.; Choudhury, A.; Walawalkar, M. G.; Pothiraja, R.; Rao, C. N. R. Metal Complexes of Organophosphate Esters and Open- Framework Metal Phosphates: Synthesis, Structure, Transformations, and Applications. Chem. Rev. 2008, 108, 3549–3655.
- 51 Gao, Y.; Wang, J.; Yang, Y.; Wang, J.; Zhang, C.; Wang, X.; Yao, J. Engineering Spin States of Isolated Copper Species in a Metal–Organic Framework Improves Urea Electrosynthesis. Nano-Micro Lett. 2023, 15, 158.
- 52 Li, P.; Zhu, Q.; Liu, J.; Wu, T.; Song, X.; Meng, Q.; Kang, X.; Sun, X.; Han, B. Efficient C–N coupling for urea electrosynthesis on defective Co3O4 with dual−functional sites. Chem. Sci. 2024, 15, 3233–3239.
- 53
Sun, M.; Wu, G.; Jiang, J.; Yang, Y.; Du, A.; Dai, L.; Mao, X.; Qin, Q. Carbon-Anchored Molybdenum Oxide Nanoclusters as Efficient Catalysts for the Electrosynthesis of Ammonia and Urea. Angew. Chem. Int. Ed. 2023, 135, e202301957.
10.1002/ange.202301957 Google Scholar
- 54 Meng, N.; Huang, Y.; Liu, Y.; Yu, Y.; Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2021, 2, 100378.
- 55
Zhang, Y.; Zhao, Y.; Sendeku, M. G.; Li, F.; Fang, J.; Wang, Y.; Zhuang, Z.; Kuang, Y.; Liu, B.; Sun, X. Tuning Intermediates Adsorption and C–N Coupling for Efficient Urea Electrosynthesis via Doping Ni into Cu. Small Methods 2023, 8, 2300811.
10.1002/smtd.202300811 Google Scholar
- 56 Geng, C.; Niu, J.; Zhao, D.; Jin, X.; Liu, J.; Liu, X.; Wong, D. K. Y. Evaluation of electrocatalysis of hourglass−shaped polyoxometallates with different transition metals towards hydrogen peroxide transformed from superoxide radicals in living cell mitochondria. Chem. Eng. J. 2023, 475, 146302.
- 57 Zhou, Y.; Zhou, Q.; Liu, H.; Xu, W.; Wang, Z.; Qiao, S.; Ding, H.; Chen, D.; Zhu, J.; Qi, Z.; Wu, X.; He, Q.; Song, L. Asymmetric dinitrogen−coordinated nickel single−atomic sites for efficient CO2 electroreduction. Nat. Commun. 2023, 14, 3776.
- 58
Tan, Y.; Sun, G.; Jiang, T.; Liu, D.; Li, Q.; Yang, S.; Chai, J.; Gao, S.; Yu, H.; Zhu, M. Symmetry Breaking Enhancing the Activity of Electrocatalytic CO2 Reduction on an Icosahedron-Kernel Cluster by Cu Atoms Regulation. Angew. Chem. Int. Ed. 2024, 136, e202318338.
10.1002/ange.202317471 Google Scholar
- 59
Wen, M.; Sun, N.; Jiao, L.; Zang, S.; Jiang, H. Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO2 Electroreduction at Ampere-Level Current. Angew. Chem. Int. Ed. 2024, 136, e202318338.
10.1002/ange.202318338 Google Scholar
- 60 Pei, J.; Shang, H.; Mao, J.; Chen, Z.; Sui, R.; Zhang, X.; Zhou, D.; Wang, Y.; Zhang, F.; Zhu, W.; Wang, T.; Chen, W.; Zhuang, Z. A replacement strategy for regulating local environment of single−atom Co−SxN4−x catalysts to facilitate CO2 electroreduction. Nat. Commun. 2024, 15, 416.
- 61 Liu, Y.; Qiu, W.; Wang, P.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z.; Li, P. Pyridine−N−rich Cu single−atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B-Environ. Energy 2024, 340, 123228.
- 62 Xu, J.; Zhang, S.; Liu, H.; Liu, S.; Yuan, Y.; Meng, Y.; Wang, M.; Shen, C.; Peng, Q.; Chen, J.; Wang, X.; Song, L.; Li, K.; Chen, W. Breaking Local Charge Symmetry of Iron Single Atoms for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. 2023, 62, e202308044.
- 63 Zhang, T.; Jin, J.; Chen, J.; Fang, Y.; Han, X.; Chen, J.; Li, Y.; Wang, Y.; Liu, J.; Wang, L. Pinpointing the axial ligand effect on platinum single−atom−catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.
- 64
Leverett, J.; Tran-Phu, T.; Yuwono, J. A.; Kumar, P.; Kim, C.; Zhai, Q.; Han, C.; Qu, J.; Cairney, J.; Simonov, A. N.; Hocking, R. K.; Dai, L.; Daiyan, R.; Amal, R. Tuning the Coordination Structure of Cu–N–C Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO2 and NO3– to Urea. Adv. Energy Mater. 2022, 12, 202201500.
10.1002/aenm.202201500 Google Scholar
- 65 Zhao, Y.; Ding, Y.; Li, W.; Liu, C.; Li, Y.; Zhao, Z.; Shan, Y.; Li, F.; Sun, L.; Li, F., Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 2023, 14, 4491.
- 66 Kong, Y.; Lv, C.; Chen, G. Implantation of iron into copper: an effective strategy for facilitating electrocatalytic nitrogen reduction reaction. Mater. Today Energy 2023, 31, 101215.
- 67 Wang, Y.; Xia, S.; Zhang, J.; Li, Z.; Cai, R.; Yu, C.; Zhang, Y.; Wu, J.; Wu, Y. Spatial Management of CO Diffusion on Tandem Electrode Promotes NH2 Intermediate Formation for Efficient Urea Electrosynthesis. ACS Energy Lett. 2023, 8, 3373−3380.
- 68 Anastasiadou, D.; Ligt, B.; He, Y.; van de Poll, R.; Simons, J.; Figueiredo, M. Carbon dioxide and nitrate co−electroreduction to urea on CuOxZnOy. Commun. Chem. 2023, 6, 199.
- 69 Li, L.; Tang, C.; Jin, H.; Davey, K.; Qiao, S. Main−group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232−3255.
- 70 Lv, C.; Zhong, L.; Yao, Y.; Liu, D.; Kong, Y.; Jin, X.; Fang, Z.; Xu, W.; Yan, C.; Dinh, K.; Shao, M.; Song, L.; Chen, G.; Li, S.; Yan, Q.; Yu, G. Boosting Electrocatalytic Ammonia Production through Mimicking “π Back−Donation”. Chem 2020, 6, 2690−2702.
- 71 Lv, C.; Yan, C.; Chen, G.; Ding, Y.; Sun, J.; Zhou, Y.; Yu, G. An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angew. Chem. Int. Ed. 2018, 57, 6073−6076.
- 72 Lv, C.; Qian, Y.; Yan, C.; Ding, Y.; Liu, Y.; Chen, G.; Yu, G. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angew. Chem. Int. Ed. 2018, 57, 10246−10250.
- 73
Zhao, R.; Yan, Q.; Yu, L.; Yan, T.; Zhu, X.; Zhao, Z.; Liu, L.; Xi, J. A Bi-Co Corridor Construction Effectively Improving the Selectivity of Electrocatalytic Nitrate Reduction toward Ammonia by Nearly 100%. Adv. Mater. 2023, 35, 202306633.
10.1002/adma.202306633 Google Scholar
- 74 Yuan, M.; Zhang, H.; Xu, Y.; Liu, R.; Wang, R.; Zhao, T.; Zhang, J.; Liu, Z.; He, H.; Yang, C.; Zhang, S.; Zhang, G. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catal. 2022, 2, 309−320.
- 75 Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; Wang, C.; Xie, Y. Efficient Visible-Light-Driven CO2 Reduction Mediated by Defect-Engineered BiOBr Atomic Layers. Angew. Chem. Int. Ed. 2018, 57, 8719−8723.
- 76 Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080.
- 77 Billy, J.; Co, A. Reducing the onset potential of CO2 electroreduction on CuRu bimetallic particles. Appl. Catal. B-Environ. Engergy 2018, 237, 911−918.
- 78 Yang, M.; Wei, T.; He, J.; Liu, Q.; Feng, L.; Li, H.; Luo, J.; Liu, X. Au nanoclusters anchored on TiO2 nanosheets for high−efficiency electroreduction of nitrate to ammonia. Nano Res. 2024, 17, 1209−1216.
- 79 Hong, Q.; Sun, B.; Ai, X.; Tian, X.; Li, F.; Chen, Y. Au Nanocrystals Modified Holey PtTeAu Metallene Heteronanostructures for Plasmon-Enhanced Nitrate Electroreduction. Adv. Funct. Mater. 2023, 34, 202310730.
- 80 Zhang, S.; Chen, D.; Guo, Y.; Zhang, R.; Zhao, Y.; Huang, Z.; Fan, J.; Ho, J. C.; Zhi, C. Piezoelectricity regulated ohmic contact in M/BaTiO3 (M = Ru, Pd, Pt) for charge collision and hydrogen free radical production in ammonia electrosynthesis. Mater. Today 2023, 66, 17−25.
- 81
Wei, X.; Chen, C.; Fu, X.; Wang, S. Oxygen Vacancies-Rich Metal Oxide for Electrocatalytic Nitrogen Cycle. Adv. Energy Mater. 2023, 14, 2303027.
10.1002/aenm.202303027 Google Scholar
- 82 Liu, S.; Yin, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Rep. Phys. Sci. 2022, 3, 100869.
- 83 Meng, N.; Ma, X.; Wang, C.; Wang, Y.; Yang, R.; Shao, J.; Huang, Y.; Xu, Y.; Zhang, B.; Yu, Y. Oxide−Derived Core–Shell Cu@Zn Nanowires for Urea Electrosynthesis from Carbon Dioxide and Nitrate in Water. ACS Nano 2022, 16, 9095−9104.
- 84 Zhao, Q.; Lu, X.; Wang, Y.; Zhu, S.; Liu, Y.; Xiao, F.; Dou, S. X.; Lai, W.; Shao, M. Sustainable and High-Rate Electrosynthesis of Nitrogen Fertilizer. Angew. Chem. Int. Ed. 2023, 62, e202307123.
- 85 Velpandian, M.; Dhongde, V.; Singh, K.; Gupta, P.; Sarma, D.; Mahata, A.; Basu, S. Understanding urea electro synthesis using layered perovskite NdBa0.25Sr0.75Co2O5+δ cathode material. Chem. Eng. Res. Des. 2023, 198, 1−13.
- 86 Cao, N.; Quan, Y.; Guan, A.; Yang, C.; Ji, Y.; Zhang, L.; Zheng, G. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109−114.
- 87 Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Shi, Q.; Li, S.; Wang, X.; Zhang, G. Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 2021, 12, 6048−6058.
- 88 Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Wang, Q.; Li, S.; He, H.; Zhang, G. Unveiling Electrochemical Urea Synthesis by Co-Activation of CO2 and N2 with Mott–Schottky Heterostructure Catalysts. Angew. Chem. Int. Ed. 2021, 60, 10910−10918.
- 89 Yuan, M.; Chen, J.; Xu, Y.; Liu, R.; Zhao, T.; Zhang, J.; Ren, Z.; Liu, Z.; Streb, C.; He, H.; Yang, C.; Zhang, S.; Zhang, G. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 2021, 14, 6605−6615.
- 90 Li, K.; Wang, Y.; Lu, J.; Ding, W.; Huo, F.; He, H.; Zhang, S. Screening and mechanistic study of bimetallic catalysts for the electrosynthesis of urea from carbon dioxide and dinitrogen. Cell Rep. Phys. Sci. 2023, 4, 101435.
- 91 Xiong, H.; Yu, P.; Chen, K.; Lu, S.; Hu, Q.; Cheng, T.; Xu, B.; Lu, Q. Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt. Nat. Catal. 2024, 7, 785–795.
- 92 Zhu, B.; Liang, Z.; Zou, R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small 2020, 16, e1906133.
- 93 Zhao, F.; Ye, J.; Yuan, Q.; Yang, X.; Zhou, Z. Realizing a CO−free pathway and enhanced durability in highly dispersed Cu−doped PtBi nanoalloys towards methanol full electrooxidation. J. Mater. Chem. A 2020, 8, 11564−11572.
- 94 Kim, J.; Ju, J.; Choi, S.; Unithrattil, S.; Lee, S.; Kang, Y.; Kim, Y.; Im, W.; Choi, S. In situ preparation and unique electrochemical behavior of pore−embedding CoO/Co3O4 intermixed composite for Li+ rechargeable battery electrodes. J. Power Sources 2018, 378, 562−570.
- 95 Sreekanth, T. V. M.; Sindhu, R.; Kumar, E. P.; Abhilash, M.; Wei, X.; Kim, J.; Yoo, K. Controllable synthesis of urea−assisted Co3O4 nanostructures as an effective catalyst for urea electrooxidation. Colloids Surf., A 2023, 657, 130576.
- 96 Sreekanth, T.; Wei, X.; Yoo, K.; Kim, J. Urea electrooxidation using ZIF−67−derived Co3O4 catalyst. Mater. Chem. Phys. 2023, 295, 127167.
- 97 Nagajyothi, P.; Ramaraghavulu, R.; Yoo, K.; Pavani, K.; Shim, J. An inexpensive Ni−doped Co3O4 electrocatalyst for urea oxidation. Colloids Surf., A 2022, 635, 128101.
- 98 Wu, F.; Ou, G.; Yang, J.; Li, H.; Gao, Y.; Chen, F.; Wang, Y.; Shi, Y. Bifunctional nickel oxide−based nanosheets for highly efficient overall urea splitting. Chem. Commun. 2019, 55, 6555−6558.
- 99 Amer, M.; Arunachalam, P.; Al−Mayouf, A.; AlSaleh, A.; Almutairi, Z. Bifunctional vanadium doped mesoporous Co3O4 on nickel foam towards highly efficient overall urea and water splitting in the alkaline electrolyte. Environ. Res. 2023, 236, 116818.
- 100 Chang, X.; Li, S.; Wang, L.; Dai, L.; Wu, Y.; Wu, X.; Tian, Y.; Zhang, S.; Li, D. Tuning Morphology and Electronic Structure of Cobalt Metaphosphate via Vanadium-Doping for Efficient Water and Urea Splitting. Adv. Funct. Mater. 2024, 34, 2313974.
- 101 Gao, S.; Fan, J.; Xiao, G.; Cui, K.; Wang, Z.; Huang, T.; Tan, Z.; Niu, C.; Luo, W.; Chao, Z. Synthesis of FeCo2O4@Co3O4 nanocomposites and their electrochemical catalytical performaces for energy−saving H2 prodcution. Int. J. Hydrogen Energy 2023, 48, 17147−17159.
- 102 Fang, M.; Xu, W.; Han, S.; Cao, P.; Xu, W.; Zhu, D.; Lu, Y.; Liu, W. Enhanced urea oxidization electrocatalysis on spinel cobalt oxide nanowires via on−site electrochemical defect engineering. Mater. Chem. Front. 2021, 5, 3717−3724.
- 103 Zhuang, Z.; Li, Y.; Li, Z.; Lv, F.; Lang, Z.; Zhao, K.; Zhou, L.; Moskaleva, L.; Guo, S.; Mai, L. MoB/g-C3N4 Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angew. Chem. Int. Ed. 2017, 57, 496−500.
- 104 Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Bimetal Schottky Heterojunction Boosting Energy-Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000556.
- 105 Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis. Adv. Energy Mater. 2018, 8, 1801775.
- 106 Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124−4155.
- 107 Gong, Y.; Zhao, H.; Ye, D.; Duan, H.; Tang, Y.; He, T.; Shah, L.; Zhang, J. High efficiency UOR electrocatalyst based on crossed nanosheet structured FeCo−LDH for hydrogen production. Appl. Catal. A-Gen. 2022, 643, 118745.
- 108 Wang, Z.; Liu, W.; Hu, Y.; Guan, M.; Xu, L.; Li, H.; Bao, J.; Li, H. Cr−doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B-Environ. Energy 2020, 272, 118959.
- 109 Xu, X.; Zhou, Y. K.; Yuan, T.; Li, Y. W. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea. Electrochim. Acta 2013, 112, 587−595.
- 110 Zhu, D.; Zhang, H.; Miao, J.; Hu, F.; Wang, L.; Tang, Y.; Qiao, M.; Guo, C. Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. J. Mater. Chem. A 2022, 10, 3296−3313.
- 111 Chen, W.; Xu, L.; Zhu, X.; Huang, Y. C.; Zhou, W.; Wang, D.; Zhou, Y.; Du, S.; Li, Q.; Xie, C.; Tao, L.; Dong, C. L.; Liu, J.; Wang, Y.; Chen, R.; Su, H.; Chen, C.; Zou, Y.; Li, Y.; Liu, Q.; Wang, S. Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the N−N Bond. Angew. Chem. Int. Ed. 2021, 60, 7297−7307.
- 112 Barakat, N.; El−Newehy, M.; Yasin, A.; Ghouri, Z.; Al−Deyab, S. Ni&Mn nanoparticles−decorated carbon nanofibers as effective electrocatalyst for urea oxidation. Appl. Catal. A-Gen. 2016, 510, 180−188.
- 113 Yan, W.; Wang, D.; Botte, G. G. Nickel and cobalt bimetallic hydroxide catalysts for urea electro−oxidation. Electrochim. Acta 2012, 61, 25−30.
- 114 Yan, W.; Wang, D.; Botte, G. Electrochemical decomposition of urea with Ni−based catalysts. Appl. Catal. B-Environ. Energy 2012, 127, 221−226.
- 115 Abdelkareem, M.; Al Haj, Y.; Alajami, M.; Alawadhi, H.; Barakat, N. Ni−Cd carbon nanofibers as an effective catalyst for urea fuel cell. J. Environ. Chem. Eng. 2018, 6, 332−337.
- 116 Diao, Y.; Liu, Y.; Hu, G.; Zhao, Y.; Qian, Y.; Wang, H.; Shi, Y.; Li, Z. NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy−saving hydrogen production. Biosens. Bioelectron. 2022, 211, 114380.
- 117 Huang, H.; Wang, X. Recent progress on carbon−based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266−6291.
- 118 Tang, S.; Sun, G.; Qi, J.; Sun, S.; Guo, J.; Xin, Q.; Haarberg, G. M. Review of New Carbon Materials as Catalyst Supports in Direct Alcohol Fuel Cells. Chin. J. Catal. 2010, 31, 12−17.
- 119 Abutaleb, A. Electrochemical Oxidation of Urea on NiCu Alloy Nanoparticles Decorated Carbon Nanofibers. Catalysts 2019, 9, 397.
- 120 Guo, X.; Zhang, W.; Shi, R.; Zhu, H.; Qian, C.; Yang, H.; Zhang, J.; Yuan, A.; Zhou, Y. Facile Fabrication of Amorphous Ni−P Supported on a 3D Biocarbon Skeleton as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem 2019, 6, 3071−3076.
- 121 Pei, C.; Chen, S.; Zhao, T.; Li, M.; Cui, Z.; Sun, B.; Hu, S.; Lan, S.; Hahn, H.; Feng, T. Nanostructured Metallic Glass in a Highly Upgraded Energy State Contributing to Efficient Catalytic Performance. Adv. Mater. 2022, 34, e2200850.
- 122 Ma, T.; Dai, S.; Jaroniec, M.; Qiao, S. Metal−Organic Framework Derived Hybrid Co3O4−Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.
- 123 Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 7584−7588.
- 124 Alex, C.; Shukla, G.; John, N. Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation. Electrochim. Acta 2021, 385, 138425.
- 125 Ge, J.; Liu, Z.; Guan, M.; Kuang, J.; Xiao, Y.; Yang, Y.; Tsang, C. H.; Lu, X.; Yang, C. Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides. J. Colloid Interface Sci. 2022, 620, 442−453.
- 126 Li, Q.; Li, N.; An, J.; Pang, H. Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro−oxidation. Inorg. Chem. Front. 2020, 7, 2089−2096.
- 127 Liu, P.; Ran, J.; Xia, B.; Xi, S.; Gao, D.; Wang, J. Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn−Air Batteries. Nano-Micro Lett. 2020, 12, 68.
- 128 Lu, S.; Gu, Z.; Hummel, M.; Zhou, Y.; Wang, K. L.; Xu, B.; Wang, Y.; Li, Y.; Qi, X.; Liu, X. Nickel Oxide Immobilized on the Carbonized Eggshell Membrane for Electrochemical Detection of Urea. J. Electrochem. Soc. 2020, 167, 106509.
- 129 Sha, L.; Ye, K.; Wang, G.; Shao, J.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G.; Cao, D. Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium. J. Power Sources 2019, 412, 265−271.
- 130 Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Adv. Funct. Mater. 2016, 26, 4661−4672.
- 131 Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. Efficient Electrocatalytic Oxygen Evolution on Amorphous Nickel−Cobalt Binary Oxide Nanoporous Layers. ACS Nano 2014, 8, 9518−9523.
- 132 Han, W; Wei, J.; Xiao, K.; Ouyang, T.; Peng, X.; Zhao, S.; Liu, Z. Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angew. Chem. Int. Ed. 2022, 61, e202206050.
- 133 Rahmanian, A.; Mirzaei, M.; Latifi, A.; Farnoosh, G. Efficient urea electrochemical oxidation using Ag−decorated NiO nanowalls grown on nickel foam substrate. J. Porous Mater. 2023, 30, 1975−1984.
- 134 Desalegn, B.; Hern, K.; Gil Seo, J. Synergistically Interfaced Bifunctional Transition Metal Selenides for High-Rate Hydrogen Production via Urea Electrolysis. ChemCatChem 2022, 14, e2021009.
- 135 Sreekanth, T.; Dillip, G.; Wei, X.; Yoo, K.; Kim, J. Binder free Ni/NiO electrocatalysts for urea oxidation reaction. Mater. Lett. 2022, 327, 133038.
- 136
Wang, Y.; Zhu, M.; Xie, T.; Liu, S.; Wang, J. Enhanced hydrogen production via urea electrolysis over Ni−NiO electrodeposited on Ti mesh. Nanotechnology 2023, 35, 025402.
10.1088/1361-6528/ad0243 Google Scholar
- 137 Yang, M.; Bai, Q.; Ding, C. NiMoO4 nanoparticles embedded in nanoporous carbon nanosheets derived from peanut shells: Efficient electrocatalysts for urea oxidation. Colloids Surf., A 2020, 604, 125276.
- 138 Forslund, R.; Mefford, J.; Hardin, W.; Alexander, C.; Johnston, K.; Stevenson, K. Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation. ACS Catal. 2016, 6, 5044−5051.
- 139 Atta, N.; El-Sherif, R.; Hassan, H.; Hefnawy, M.; Galal, A. Conducting Polymer−Mixed Oxide Composite Electrocatalyst for Enhanced Urea Oxidation. J. Electrochem. Soc. 2018, 165, J3310−J3317.
- 140 Galal, A.; Atta, N.; Hefnawy, M. Lanthanum nickel oxide nano−perovskite decorated carbon nanotubes/poly(aniline) composite for effective electrochemical oxidation of urea. Electroanal. Chem. 2020, 862, 114009.
- 141 Forslund, R. P.; Alexander, C. T.; Abakumov, A. M.; Johnston, K. P.; Stevenson, K. J. Enhanced Electrocatalytic Activities by Substitutional Tuning of Nickel−Based Ruddlesden–Popper Catalysts for the Oxidation of Urea and Small Alcohols. ACS Catal. 2019, 9, 2664−2673.
- 142 Maheskumar, V.; Saravanakumar, K.; Govindan, J.; Park, C. M. Rational design of double perovskite La2Ni0.5Co0.5MnO6 decorated polyaniline array on MoO3 nanobelts with strong heterointerface boosting oxygen evolution reaction and urea oxidation. Appl. Surf. Sci. 2023, 612, 155737.
- 143 Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catal. 2017, 8, 1−7.
- 144 Ji, X.; Zhang, Y.; Ma, Z.; Qiu, Y. Oxygen Vacancy−rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem 2020, 13, 5004−5014.
- 145 Zhang, J.; Zhu, J.; Kang, L.; Zhang, Q.; Liu, L.; Guo, F.; Li, K.; Feng, J.; Xia, L.; Lv, L.; Zong, W.; Shearing, P. R.; Brett, D. J. L.; Parkin, I. P.; Song, X.; Mai, L.; He, G. Balancing dynamic evolution of active sites for urea oxidation in practical scenarios. Energy Environ. Sci. 2023, 16, 6015–6025.
- 146 Qian, S.; Rao, Z.; Liu, Y.; Yan, J.; Fan, B.; Gui, Y.; Guo, F. Nickel−Rhodium bimetallic dispersions supported on nickel foam as the efficient catalyst for urea electrooxidation in alkaline medium. Electrochim. Acta 2020, 330, 135211.
- 147 Zhong, M.; Xu, M.; Ren, S.; Li, W.; Wang, C.; Gao, M.; Lu, X. Modulating the electronic structure of Ni(OH)2 by coupling with low-content Pt for boosting the urea oxidation reaction enables significantly promoted energy-saving hydrogen production. Energ Environ Sci. 2024, 17, 1984–1996.
- 148 Xie, J.; Gao, L.; Cao, S.; Liu, W.; Lei, F.; Hao, P.; Xia, X.; Tang, B. Copper−incorporated hierarchical wire−on−sheet α-Ni(OH)2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. J. Mater. Chem. A 2019, 7, 13577−13584.
- 149 Wang, P.; Bai, X.; Jin, H.; Gao, X.; Davey, K.; Zheng, Y.; Jiao, Y.; Qiao, S. Z. Directed Urea-to-Nitrite Electrooxidation via Tuning Intermediate Adsorption on Co, Ge Co-Doped Ni Sites. Adv. Funct. Mater. 2023, 33, 2300687.
- 150 Lu, S.-Y.; Wang, L.; Wu, C.; Zhang, J.; Dou, W.; Hu, T.; Wang, R.; Liu, Y.; Yang, Q.; Yi, H.; Jin, M. Constructing Nickel Phosphate Polymorph Heterojunctions by In Situ Cr-Induced Structural Transition for Enhanced Bifunctional Electrochemical Water Splitting. ACS Sustainable Chem. Eng. 2024, 12, 6376–6388.
- 151 Xu, S.; Jiao, D.; Ruan, X.; Jin, Z.; Qiu, Y.; Feng, Z.; Zheng, L.; Fan, J.; Zheng, W.; Cui, X. O-2p Hybridization Enhanced Transformation of Active γ-NiOOH by Chromium Doping for Efficient Urea Oxidation Reaction. Adv. Funct. Mater. 2024, 34, 2401265.
- 152 Wang, Z.; Liu, W.; Bao, J.; Song, Y.; She, X.; Hua, Y.; Lv, G.; Yuan, J.; Li, H.; Xu, H. Modulating electronic structure of ternary NiMoV LDH nanosheet array induced by doping engineering to promote urea oxidation reaction. Chem. Eng. J. 2022, 430, 133100.
- 153 Qin, H.; Ye, Y.; Li, J.; Jia, W.; Zheng, S.; Cao, X.; Lin, G.; Jiao, L. Synergistic Engineering of Doping and Vacancy in Ni(OH)2 to Boost Urea Electrooxidation. Adv. Funct. Mater. 2022, 33, 2209698.
- 154 Zemtsova, V. M.; Oshchepkov, A. G.; Savinova, E. R. Unveiling the Role of Iron in the Nickel−Catalyzed Urea Oxidation Reaction. ACS Catal. 2023, 13, 13466−13473.
- 155 Zhao, Y.; Sun, X.; Cao, Q.; Zhou, J.; Tan, W.; Piao, Z.; Liu, E.; Ding, R.; Gao, P.; Lin, W. Accelerating charge transfer for Ni(OH)2 through chlorine−anion decoration in the urea electrooxidation reaction. New J. Chem. 2023, 47, 9483−9491.
- 156 Yang, M.; Liu, Y.; Ge, W.; Liu, Z. Enhanced electrocatalytic activity of sulfur and tungsten co-doped nickel hydroxide nanosheets for urea oxidation. Colloids Surf., A 2023, 665, 131226.
- 157 Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269−271.
- 158 Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986−3017.
- 159 Kurra, N.; Xia, C.; Hedhili, M. N.; Alshareef, H. N. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chem. Commun. 2015, 51, 10494−10497.
- 160 Wang, Y.; Ren, B.; Ou, J. Z.; Xu, K.; Yang, C.; Li, Y.; Zhang, H. Engineering two−dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228−1252.
- 161 Wang, S.; Zhao, L.; Li, J.; Tian, X.; Wu, X.; Feng, L. High valence state of Ni and Mo synergism in NiS2−MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J. Energy Chem. 2022, 66, 483−492.
- 162 Cao, Q.; Huang, W.; Shou, J.; Sun, X.; Wang, K.; Zhao, Y.; Ding, R.; Lin, W.; Liu, E.; Gao, P. Coupling Dual−phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J. Colloid Interface Sci. 2023, 629, 33−43.
- 163 Ni, S.; Qu, H.; Xu, Z.; Zhu, X.; Xing, H.; Wang, L.; Yu, J.; Liu, H.; Chen, C.; Yang, L. Interfacial engineering of the NiSe2/FeSe2 p−p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B-Environ. Energy 2021, 299, 120638.
- 164 Sayed, E. T.; Abdelkareem, M. A.; Bahaa, A.; Eisa, T.; Alawadhi, H.; Al-Asheh, S.; Chae, K.-J.; Olabi, A. G. Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells. Renew. Sust. Energy Rev. 2021, 150, 111470.
- 165 Hu, S. N.; Feng, C. Q.; Wang, S. Q.; Liu, J. W.; Wu, H. M.; Zhang, L.; Zhang, J. J., Ni3N/NF as Bifunctional Catalysts for Both Hydrogen Generation and Urea Decomposition. ACS Appl. Mater. Interfaces 2019, 11, 13168−13175.
- 166 Cao, X.; Wen, P.; Ma, R.; Liu, Y.; Sun, S. C.; Ma, Q.; Zhang, P. X.; Qiu, Y. J. Ni2P nanocrystals modification on Ta:α-Fe2O3 photoanode for efficient photoelectrochemical water splitting: In situ formation and synergistic catalysis of Ni2P@NiOOH cocatalyst. Chem. Eng. J. 2022, 449, 137792.
- 167 Liu, H.; Luo, J.; Zhu, S.; Cui, Z.; Liang, Y.; Yu, S.; Wei, J. Endowing nickel nitride with moderate amount of Ni0 species for the enhanced urea oxidation reaction reactivity. Electroanal. Chem. 2023, 948, 117821.
- 168 Tong, Y.; Chen, L.; Dyson, P. J.; Fei, Z. Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure. J. Mater. Sci. 2021, 56, 17709−17720.
- 169 Liu, D.; Liu, T.; Zhang, L.; Qu, F.; Du, G.; Asiri, A. M.; Sun, X., High- performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208−3213.
- 170 Xu, X.; Guo, T.; Xia, J.; Zhao, B.; Su, G.; Wang, H.; Huang, M.; Toghan, A. Modulation of the crystalline/amorphous interface engineering on Ni−P−O−based catalysts for boosting urea electrolysis at large current densities. Chem. Eng. J. 2021, 425, 130514.
- 171
Guo, P.; Cao, S.; Huang, W.; Lu, X.; Chen, W.; Zhang, Y.; Wang, Y.; Xin, X.; Zou, R.; Liu, S.; Li, X. Heterojunction-Induced Rapid Transformation of Ni3+/Ni2+ Sites which Mediates Urea Oxidation for Energy- Efficient Hydrogen Production. Adv. Mater. 2024, 36, 2711766.
10.1002/adma.202311766 Google Scholar
- 172 Wang, L.; Li, M.; Huang, Z.; Li, Y.; Qi, S.; Yi, C.; Yang, B. Ni-WC/C nanocluster catalysts for urea electrooxidation. J. Power Sources 2014, 264, 282−289.
- 173 Wang, L.; Zhu, S.; Wang, Y.; Liu, Z.; Liu, Y.; Wang, Q.; Gu, M.; Li, K.; Sun, X.; Yang, L.; Shao, M. Amorphous nickel tungstate nanocatalyst boosts urea electrooxidation. Chem. Eng. J. 2023, 14, 5842.
- 174 Hou, G.; Shen, Z.; Tang, Y.; Chen, Q.; Cao, H.; Zhang, H.; Zheng, G.; Zhang, J. Ni−WC nanoparticles/carbon aerogel electrocatalytic electrode for methanol and urea electrooxidation. Int. J. Hydrogen. Energy 2023, 48, 991−1000.
- 175 Wright, J. C.; Michaels, A. S.; Appleby, A. J. Electrooxidation of Urea at the Ruthenium Titanium−Oxide Electrode. Aiche J. 1986, 32, 1450−1458.
- 176 Vedharathinam, V.; Botte, G. G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660−665.
- 177 Boggs, B. K.; King, R. L.; Botte, G. G. Urea electrolysis: direct hydrogen production from urine. Chem. Commun. 2009, 32, 4859−4861.
- 178 Yan, Y.; Wang, R.; Zheng, Q.; Zhong, J.; Hao, W.; Yan, S.; Zou, Z. Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics. Nat. Commun. 2023, 14, 7987.
- 179 Dong, X.; Peng, C.; Zhao, X.; Zhang, T.; Liu, Y.; Xu, G.; Zhou, J.; Guo, F.; Yu, Z.; Jia, X. Self-assembled c-oriented Ni(OH)2 films for enhanced electrocatalytic activity towards the urea oxidation reaction. RSC Adv. 2023, 13, 29625−29631.
- 180 Bezerra, A. C. S.; deSa, E. L.; Nart, F. C. In situ vibrational study of the initial steps during urea electrochemical oxidation. J. Phys. Chem. B 1997, 101, 6443–6449.
- 181 Liu, X.; Qin, H.; Wang, G.; Li, Q.; Huang, Q.; Wen, Z.; Mao, S. Co-doped Ni–Mo oxides: highly efficient and robust electrocatalysts for urea electrooxidation assisted hydrogen production. J. Mater. Chem. A 2022, 10, 16825−16833.
- 182
Tatarchuk, S. W.; Medvedev, J. J.; Li, F.; Tobolovskaya, Y.; Klinkova, A. Nickel-Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution. Angew. Chem. Int. Ed. 2022, 134, e202209839.
10.1002/ange.202209839 Google Scholar
- 183 Li, J.; Li, J.; Liu, T.; Chen, L.; Li, Y.; Wang, H.; Chen, X.; Gong, M.; Liu, Z. P.; Yang, X. Deciphering and Suppressing Over-Oxidized Nitrogen in Nickel-Catalyzed Urea Electrolysis. Angew. Chem. Int. Ed. 2021, 60, 26656–26662.
- 184 Zhang, J.; Feng, J.; Zhu, J.; Kang, L.; Liu, L.; Guo, F.; Li, J.; Li, K.; Chen, J.; Zong, W.; Liu, M.; Chen, R.; Parkin, I. P.; Mai, L.; He, G. Regulating reconstruction-engineered active sites for accelerated electrocatalytic conversion of urea. Angew. Chem. Int. Ed. 2024, 63, e202407038.
- 185 Zhan, G.; Hu, L.; Li, H.; Dai, J.; Zhao, L.; Zheng, Q.; Zou, X.; Shi, Y.; Wang, J.; Hou, W.; Yao, Y.; Zhang, L. Highly selective urea electrooxidation coupled with efficient hydrogen evolution. Nat. Commun. 2024, 15, 5918.
- 186 Chen, W.; Xu, L.; Zhu, X.; Huang, Y.; Zhou, W.; Wang, D.; Zhou, Y.; Du, S.; Li, Q.; Xie, C.; Tao, L.; Dong, C.; Liu, J.; Wang, Y.; Chen, R.; Su, H.; Chen, C.; Zou, Y.; Li, Y.; Liu, Q.; Wang, S. Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the N−N Bond. Angew. Chem. Int. Ed. 2021, 60, 7297−7307.
- 187 Chen, W.; Luo, S.; Sun, M.; Wu, X.; Zhou, Y.; Liao, Y.; Tang, M.; Fan, X.; Huang, B.; Quan, Z., High-Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis. Adv. Mater. 2022, 34, 2206276.
- 188 Zhang, W.; Feng, X.; Mao, Z. X.; Li, J.; Wei, Z. Stably Immobilizing Sub-3 nm High-Entropy Pt Alloy Nanocrystals in Porous Carbon as Durable Oxygen Reduction Electrocatalyst. Adv. Funct. Mater. 2022, 32, 2204110.
- 189 Zhang, R.; Zhang, Y.; Xiao, B.; Zhang, S.; Wang, Y.; Cui, H.; Li, C.; Hou, Y.; Guo, Y.; Yang, T.; Fan, J.; Zhi, C. Phase Engineering of High-Entropy Alloy for Enhanced Electrocatalytic Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. 2024, e202407589.
- 190 Liu, S.; Qian, T.; Wang, M.; Ji, H.; Shen, X.; Wang, C.; Yan, C. Proton- filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.
- 191 Sun, L.; Yuwono, J.; Zhang, S.; Chen, B.; Li, G.; Jin, H.; Johannessen, B.; Mao, J.; Zhang, C.; Zubair, M.; Bedford, N.; Guo, Z. High Entropy Alloys Enable Durable and Efficient Lithium-Mediated CO2 Redox Reactions. Adv. Mater. 2024, 36, 2401288.
- 192
Qi, S.; Lei, Z.; Huo, Q.; Zhao, J.; Huang, T.; Meng, N.; Liao, J.; Yi, J.; Shang, C.; Zhang, X.; Yang, H.; Hu, Q.; He, C. Ultrathin High-Entropy Fe-Based Spinel Oxide Nanosheets with Metalloid Band Structures for Efficient Nitrate Reduction toward Ammonia. Adv. Mater. 2024, 36, 403958.
10.1002/adma.202403958 Google Scholar
- 193 Huang, H.; Zhao, J.; Guo, H.; Weng, B.; Zhang, H.; Saha, R. A.; Zhang, M.; Lai, F.; Zhou, Y.; Juan, R.; Chen, P.; Wang, S.; Steele, J.; Zhong, F.; Liu, T.; Hofkens, J.; Zheng, Y.; Long, J.; Roeffaers, M. B. J. Noble-Metal-Free High-Entropy Alloy Nanoparticles for Efficient Solar-Driven Photocatalytic CO2 Reduction. Adv. Mater. 2024, 36, 2313209.
- 194
Li, Q.; Wang, D.; Yan, B.; Zhao, Y.; Fan, J.; Zhi, C. Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zinc-Based Wearable Energy-Storage Devices. Angew. Chem. Int. Ed. 2022, 134, e202202780.
10.1002/ange.202202780 Google Scholar
- 195 Nimkar, A.; Alam, K.; Bergman, G.; Levi, M.; Major, D.; Shpigel, N.; Aurbach, D. Is “Water in Salt” Electrolytes the Ultimate Solution? Achieving High Stability of Organic Anodes in Diluted Electrolyte Solutions via a Wise Anions Selection. Angew. Chem. Int. Ed. 2023, 62, e202311373.
- 196
Chen, S.; Li, S.; Ma, L.; Ying, Y.; Wu, Z.; Huang, H.; Zhi, C. Asymmetric Anion Zinc Salt Derived Solid Electrolyte Interphase Enabled Long-Lifespan Aqueous Zinc Bromine Batteries. Angew. Chem. Int. Ed. 2024, 136, e202319125.
10.1002/ange.202319125 Google Scholar
- 197
Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Zhai, Q.; Li, S.; Tu, X.; Zheng, J.; Wang, D.; Wei, X.; Chen, W.; Wang, T.; Li, Y.; Liu, Q.; Jiang, S. P.; Dai, L.; Wang, S. Selective nitrogen fixation via Janus C−N coupling in co-electrolysis. Chem 2024, 10, 1–12.
10.1016/j.chempr.2024.01.025 Google Scholar
- 198 Tu, X.; Zhu, X.; Bo, S.; Zhang, X.; Miao, R.; Wen, G.; Chen, C.; Li, J.; Zhou, Y.; Liu, Q.; Chen, D.; Shao, H.; Yan, D.; Li, Y.; Jia, J.; Wang, S. A Universal Approach for Sustainable Urea Synthesis via Intermediate Assembly at the Electrode/Electrolyte Interface. Angew. Chem. Int. Ed. 2023, 63, e202317087.
- 199 Ding, Y.; Zhou, W.; Xie, L.; Chen, S.; Gao, J.; Sun, F.; Zhao, G.; Qin, Y. Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H2O2 production. J. Mater. Chem. A 2021, 9, 15948−15954.
- 200 Blanco, D.; Lee, B.; Modestino, M. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17683−17689.
- 201 Arán−Ais, R.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 2020, 5, 317−325.
- 202 Jeon, H.; Timoshenko, J.; Rettenmaier, C.; Herzog, A.; Yoon, A.; Chee, S.; Oener, S.; Hejral, U.; Haase, F. Roldan Cuenya, B. Selectivity Control of Cu Nanocrystals in a Gas−Fed Flow Cell through CO2 Pulsed Electroreduction. J. Am. Chem. Soc. 2021, 143, 7578−7587.
- 203 Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Arán−Ais, R.; Jeon, H.; Haase, F.; Hejral, U.; Grosse, P.; Kühl, S.; Davis, E.; Tian, J.; Magnussen, O.; Roldan Cuenya, B. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 2022, 5, 259−267.
- 204 Kimura, K.; Casebolt, R.; Cimada DaSilva, J.; Kauffman, E.; Kim, J.; Dunbar, T.; Pollock, C.; Suntivich, J.; Hanrath, T. Selective Electrochemical CO2 Reduction during Pulsed Potential Stems from Dynamic Interface. ACS Catal. 2020, 10, 8632−8639.
- 205 Casebolt, R.; Levine, K.; Suntivich, J.; Hanrath, T. Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule 2021, 5, 1987−2026.
- 206
Chen, J.; Ren, L.; Chen, X.; Wang, Q.; Chen, C.; Fan, J.; Wang, S.; Binas, V.; Shen, S. Well-defined nanostructures of high entropy alloys for electrocatalysis. Exploration 2024, 20230036.
10.1002/EXP.20230036 Google Scholar
- 207
Hu, Q.; Zhou, W.; Qi, S.; Huo, Q.; Li, X.; Lv, M.; Chen, X.; Feng, C.; Yu, J.; Chai, X.; Yang, H.; He, C. Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis. Nat. Sustain. 2024, 7, 442–451.
10.1038/s41893-024-01302-0 Google Scholar
- 208 Mukherjee, J.; Paul, S.; Adalder, A.; Kapse, S.; Thapa, R.; Mandal, S.; Ghorai, B.; Sarkar, S.; Ghorai, U. K. Understanding the Site-Selective Electrocatalytic Co-Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes. Adv. Funct. Mater. 2022, 32, 2200882.
- 209 Han, S.; Li, H.; Li, T.; Chen, F.; Yang, R.; Yu, Y.; Zhang, B. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 2023, 6, 402–414.
- 210 Chen, F.; Wu, Z.; Gupta, S.; Rivera, D.; Lambeets, S.; Pecaut, S.; Kim, J.; Zhu, P.; Finfrock, Y.; Meira, D.; King, G.; Gao, G.; Xu, W.; Cullen, D.; Zhou, H.; Han, Y.; Perea, D.; Muhich, C.; Wang, H. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotech. 2022, 17, 759–767.
- 211 Chen, J.; Crooks, R.; Seefeldt, L.; Bren, K.; Bullock, R.; Darensbourg, M.; Holland, P.; Hoffman, B.; Janik, M.; Jones, A.; Kanatzidis, M.; King, P.; Lancaster, K.; Lymar, S.; Pfromm, P.; Schneider, W.; Schrock, R. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, 873.
- 212 Suryanto, B. H. R.; Matuszek, K.; Choi, J.; Hodgetts, R. Y.; Du, H. L.; Bakker, J. M.; Kang, C. S. M.; Cherepanov, P. V.; Simonov, A. N.; MacFarlane, D. R. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 2021, 372, 1187–1191.
- 213 Ren, S.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. Science 2019, 365, 367–369.
- 214 Huang, X.; Li, Y.; Xie, S.; Zhao, Q.; Zhang, B.; Zhang, Z.; Sheng, H.; Zhao, J. The Tandem Nitrate and CO2 Reduction for Urea Electrosynthesis: Role of Surface N-Intermediates in CO2 Capture and Activation. Angew. Chem. Int. Ed. 2024, 63, e202403980.
- 215 Zhang, M.; Huang, J.; Liao, P.; Chen, X. Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metal-organic framework. Chem. Commun. 2024, 60, 3669–3672.
- 216 Zhan, P.; Zhuang, J.; Yang, S.; Li, X.; Chen, X.; Wen, T.; Lu, L.; Qin, P.; Han, B. Efficient Electrosynthesis of Urea over Single-Atom Alloy with Electronic Metal Support Interaction. Angew. Chem. Int. Ed. 2024, 63, e202409019.
- 217 Yu, Y.; Sun, Y.; Han, J.; Guan, Y.; Li, H.; Wang, L.; Lai, J. Achieving efficient urea electrosynthesis through improving the coverage of a crucial intermediate across a broad range of nitrate concentrations. Energ Environ Sci 2024, 17, 5183–5190.
- 218 Qiu, W.; Qin, S.; Li, Y.; Cao, N.; Cui, W.; Zhang, Z.; Zhuang, Z.; Wang, D.; Zhang, Y. Overcoming Electrostatic Interaction via Pulsed Electroreduction for Boosting the Electrocatalytic Urea Synthesis. Angew. Chem. Int. Ed. 2024, 63, e202402684.
- 219 Liu, X.; Feng, J.; Cheng, X.; Zhang, J.; Huo, J.; Chen, D.; Marcomini, A.; Li, Y.; Xu, Q.; Lu, J. High C-Selectivity for Urea Synthesis Through O-Philic Adsorption to Form *OCO Intermediate on Ti-MOF Based Electrocatalysts. Adv. Funct. Mater. 2024, 34, 2400892.
- 220 Huang, D.; Qiu, X.; Huang, J.; Mao, M.; Liu, L.; Han, Y.; Zhao, Z.; Liao, P.; Chen, X. Electrosynthesis of urea by using Fe2O3 nanoparticles encapsulated in a conductive metal-organic framework. Nat. Synth. 2024, https://doi.org/10.1038/s44160-024-00603-8.
- 221 Gao, Y.; Wang, J.; Sun, M.; Jing, Y.; Chen, L.; Liang, Z.; Yang, Y.; Zhang, C.; Yao, J.; Wang, X. Tandem Catalysts Enabling Efficient C-N Coupling toward the Electrosynthesis of Urea. Angew. Chem. Int. Ed. 2024, 63, e202402215.
- 222 Fan, X.; Liu, C.; He, X.; Li, Z.; Yue, L.; Zhao, W.; Li, J.; Wang, Y.; Li, T.; Luo, Y.; Zheng, D.; Sun, S.; Liu, Q.; Li, L.; Chu, W.; Gong, F.; Tang, B.; Yao, Y.; Sun, X. Efficient Electrochemical Co-Reduction of Carbon Dioxide and Nitrate to Urea with High Faradaic Efficiency on Cobalt-Based Dual-Sites. Adv. Mater. 2024, 36, 2401221.
- 223 Fang, H.; Wang, Z.; Kuo, C.; Yang, H.; Feng, X.; Ji, W.; Au, C. Highly efficient and selective electrosynthesis of urea via co-reduction of carbon dioxide and nitrate over the TiN catalyst. Chem. Eng. J. 2024, 486, 150178.
- 224 Chen, X.; Lv, S.; Gu, H.; Cui, H.; Liu, G.; Liu, Y.; Li, Z.; Xu, Z.; Kang, J.; Teobaldi, G.; Liu, L.-M.; Guo, L. Amorphous Bismuth-Tin Oxide Nanosheets with Optimized C-N Coupling for Efficient Urea Synthesis. J. Am. Chem. Soc. 2024, 146, 13527–13535.
- 225 Mao, Y.; Jiang, Y.; Liu, H.; Jiang, Y.; Li, M.; Su, W.; He, R. Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chin. Chem. Lett. 2024, 35, 108540.
- 226 Yin, H.; Sun, Z.; Zhao, Q.; Yang, L.; Lu, T.; Zhang, Z. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures. J. Energy Chem. 2023, 84, 385–393.
- 227 Li, Z.; Zhou, P.; Zhou, M.; Jiang, H.; Li, H.; Liu, S.; Zhang, H.; Yang, S.; Zhang, Z. Synergistic electrocatalysis of crystal facet and O-vacancy for enhancive urea synthesis from nitrate and CO2. Appl. Catal. B-Environ. 2023, 338, 122962.
- 228 Wang, H.; Jiang, Y.; Li, S.; Gou, F.; Liu, X.; Jiang, Y.; Luo, W.; Shen, W.; He, R.; Li, M. Realizing efficient C−N coupling via electrochemical co−reduction of CO2 and NO3− on AuPd nanoalloy to form urea: Key C−N coupling intermediates. Appl. Catal. B-Environ. 2022, 318, 121819.
- 229 Jiao, D.; Dong, Y.; Cui, X.; Cai, Q.; Cabrera, C. R.; Zhao, J.; Chen, Z. Boosting the efficiency of urea synthesis via cooperative electroreduction of N2 and CO2 on MoP. J. Mater. Chem. A 2023, 11, 232−240.
- 230
Lv, Z.; Zhou, S.; Zhao, L.; Liu, Z.; Liu, J.; Xu, W.; Wang, L.; Lai, J. Coactivation of Multiphase Reactants for the Electrosynthesis of Urea. Adv. Energy Mater. 2023, 13, 202300946.
10.1002/aenm.202300946 Google Scholar
- 231 Yuan, M.; Chen, J.; Zhang, H.; Li, Q.; Zhou, L.; Yang, C.; Liu, R.; Liu, Z.; Zhang, S.; Zhang, G. Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ. Sci. 2022, 15, 2084−2095.
- 232 Wu, W.; Yang, Y.; Wang, Y.; Lu, T.; Dong, Q.; Zhao, J.; Niu, J.; Liu, Q.; Hao, Z.; Song, S. Boosting electrosynthesis of urea from N2 and CO2 by defective Cu−Bi. Chem. Catal. 2022, 2, 3225−3238.
- 233 Geng, S.; Zheng, Y.; Li, S.; Su, H.; Zhao, X.; Hu, J.; Shu, H.; Jaroniec, M.; Chen, P.; Liu, Q.; Qiao, S. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy. 2021, 6, 904–912.
- 234 Zhu, Y.; Liu, C.; Cui, S.; Lu, Z.; Ye, J.; Wen, Y.; Shi, W.; Huang, X.; Xue, L.; Bian, J.; Li, Y.; Xu, Y.; Zhang, B. Multistep Dissolution of Lamellar Crystals Generates Superthin Amorphous Ni(OH)2 Catalyst for UOR. Adv. Mater. 2023, 35, e2301549.
- 235
Zhou, Y.; Wang, Y.; Kong, D.; Zhao, Q.; Zhao, L.; Zhang, J.; Chen, X.; Li, Y.; Xu, Y.; Meng, C. Revealing the Reactant Mediation Role of Low-Valence Mo for Accelerated Urea-Assisted Water Splitting. Adv. Funct. Mater. 2022, 33, 2210656.
10.1002/adfm.202210656 Google Scholar
- 236 Zhao, Z.; Dong, Y.; Ding, H.; Li, X.; Chang, X. Manganese−facilitated dynamic active−site generation on Ni2P with self−termination of surface reconstruction for urea oxidation at high current density. Water Res. 2024, 253, 121266.
- 237 Wu, Y.; Kang, J.; Liao, H.; Chen, S.; Pi, J.; Cao, J.; Qing, Y.; Xu, H.; Wu, Y. Synergistic engineering of P, N-codoped carbon-confined bimetallic cobalt/nickel phosphides with tailored electronic structures for boosting urea electro-oxidation. J. Colloid Interface Sci. 2024, 658, 846−855.
- 238 Wan, J.; Wu, Z.; Fang, G.; Xian, J.; Dai, J.; Guo, J.; Li, Q.; You, Y.; Liu, K.; Yu, H.; Xu, W.; Jiang, H.; Xia, M.; Jin, H. Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo2O4 spinel. J. Energy Chem. 2024, 91, 226–235.
- 239 Mariappan, A.; Mannu, P.; Ranjith, K.; Nga, T.; Han, Y.; Dong, C.; Dharman, R.; Oh, T. Novel Heterostructure-Based CoFe and Cobalt Oxysulfide Nanocubes for Effective Bifunctional Electrocatalytic Water and Urea Oxidation. Small 2024, 20, 2310112.
- 240 Ahmad, W.; Hou, Y.; Ahmad, N.; Wang, K.; Zou, C.; Wan, Z.; Aftab, S.; Zhou, S.; Pan, Z.; Gao, H. L.; Liang, C.; Yan, W.; Ling, M.; Lu, Z., Sr-induced Fermi Engineering of β-FeOOH for Multifunctional Catalysis. Small Methods 2024, 2301434.
- 241 Wu, K.; Li, H.; Lyu, C.; Cheng, J.; Yang, Y.; Zhu, X.; Lau, W.-M.; Zheng, J. Interfacial engineering of two-dimensional NiS2/VS heterostructure nanosheets as bifunctional electrocatalysts for urea-assisted energy-saving water electrolysis. J. Alloys Compd. 2023, 945, 169290.
- 242 Zheng, X.; Yang, J.; Li, P.; Jiang, Z.; Zhu, P.; Wang, Q.; Wu, J.; Zhang, E.; Sun, W.; Dou, S.; Wang, D.; Li, Y. Dual-Atom Support Boosts Nickel- Catalyzed Urea Electrooxidation. Angew. Chem. Int. Ed. 2023, 62, e202217449.
- 243
Xu, X.; Ullah, H.; Humayun, M.; Li, L.; Zhang, X.; Bououdina, M.; Debecker, D. P.; Huo, K.; Wang, D.; Wang, C. Fluorinated Ni-O-C Heterogeneous Catalyst for Efficient Urea-Assisted Hydrogen Production. Adv. Funct. Mater. 2023, 33, 202303986.
10.1002/adfm.202303986 Google Scholar
- 244 Shekhawat, A.; Samanta, R.; Panigrahy, S.; Barman, S. Electrocatalytic Oxidation of Urea and Ethanol on Two−Dimensional Amorphous Nickel Oxide Encapsulated on N−Doped Carbon Nanosheets. ACS Appl. Energy Mater. 2023, 6, 3135−3146.
- 245 Lu, B.; Lv, C.; Xie, Y.; Gao, L.; Yan, J.; Zhu, K.; Wang, G.; Cao, D.; Ye, K. Exploring the Synergistic Effect of CoSeP/CoP Interface Catalyst For Efficient Urea Electrolysis. Small 2023, 19, e2302923.
- 246 Liu, M.; Zou, W.; Qiu, S.; Su, N.; Cong, J.; Hou, L. Active Site Tailoring of Ni-Based Coordination Polymers for High-Efficiency Dual-Functional HER and UOR Catalysis. Adv. Funct. Mater. 2024, 34, 2310155.
- 247 Liu, M.; Zou, W.; Cong, J.; Su, N.; Qiu, S.; Hou, L. Identifying and Unveiling the Role of Multivalent Metal States for Bidirectional UOR and HER Over Ni, Mo-Trithiocyanuric Based Coordination Polymer. Small 2023, 19, 202302698.
- 248 Gao, X.; Bai, X.; Wang, P.; Jiao, Y.; Davey, K.; Zheng, Y.; Qiao, S. Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nat. Commun. 2023, 14, 5842.
- 249 Dan, L.; Zou, X.; Ruan Q.; Liu, L.; Liu, J.; Wang, B.; Wang, Y., Zhang, X.; Chen R.; Ni, H.; Huang, C.; Wang, H.; Chu, P. K. Suppression of Passivation on Nickel Hydroxide in Electrocatalytic Urea Oxidization. Adv. Funct. Mater. 2023, 34, 2313680.
- 250 Chen, T.; Wu, Q.; Li, F.; Zhong, R.; Chen, Z. Co2P–Ni3S2 Heterostructured Nanocrystals as Catalysts for Urea Electrooxidation and Urea-Assisted Water Splitting. ACS Appl. Nano Mater. 2023, 6, 18364−18371.
- 251 Zhao, J.; Zhang, Y.; Guo, H.; Ren, J.; Zhang, H.; Wu, Y.; Song, R. Defect−rich Ni(OH)2/NiO regulated by WO3 as core–shell nanoarrays achieving energy-saving water-to-hydrogen conversion via urea electrolysis. Chem. Eng. J. 2022, 433, 134497.
- 252
Yu, Z.; Li, Y.; Martin-Diaconescu, V.; Simonelli, L.; Ruiz Esquius, J.; Amorim, I.; Araujo, A.; Meng, L.; Faria, J.; Liu, L. Highly Efficient and Stable Saline Water Electrolysis Enabled by Self-Supported Nickel-Iron Phosphosulfide Nanotubes with Heterointerfaces and Under-Coordinated Metal Active Sites. Adv. Funct. Mater. 2022, 32, 202206138.
10.1002/adfm.202206138 Google Scholar
- 253 Xu, Z.; Chen, Q.; Chen, Q.; Wang, P.; Wang, J.; Guo, C.; Qiu, X.; Han, X.; Hao, J. Interface enables faster surface reconstruction in a heterostructured Co–Ni–S electrocatalyst towards efficient urea oxidation. J. Mater. Chem. A 2022, 10, 24137−24146.
- 254 Rajpure, M.; Bandal, H.; Jadhav, H.; Kim, H. Systematic development of bimetallic MOF and its phosphide derivative as an efficient multifunctional electrocatalyst for urea−assisted water splitting in alkaline medium. Electroanal. Chem. 2022, 923, 116825.
- 255 Kumar, A.; Liu, X.; Lee, J.; Debnath, B.; Jadhav, A.; Shao, X.; Bui, V.; Hwang, Y.; Liu, Y.; Kim, M.; Lee, H. Discovering ultrahigh loading of single−metal−atoms via surface tensile−strain for unprecedented urea electrolysis. Energy Environ. Sci. 2021, 14, 6494−6505.
- 256 Ji, Z.; Song, Y.; Zhao, S.; Li, Y.; Liu, J.; Hu, W. Pathway Manipulation via Ni, Co, and V Ternary Synergism to Realize High Efficiency for Urea Electrocatalytic Oxidation. ACS Catal. 2021, 12, 569−579.
- 257 Xiang, L.; Zhang, W.; Xu, H.; Hu, M.; Yang, J.; Liu, J.; Gu, Z.; Yan, X. Hierarchical microspheres constructed by hexagonal NiCo(OH)2 nanosheets with rich Ni3+ species and carboxylic groups for efficient urea oxidation reaction. J. Alloys Compd. 2023, 930, 167453.
- 258 Wu, Y.; Kang, J.; Liao, H.; Chen, S.; Pi, J.; Cao, J.; Qing, Y.; Xu, H.; Wu, Y. Synergistic engineering of P, N-codoped carbon-confined bimetallic cobalt/nickel phosphides with tailored electronic structures for boosting urea electro-oxidation. J. Colloid Interf. Sci. 2024, 658, 846–855.
- 259 Yang, X.; Zhang, H.; Xu, W.; Yu, B.; Liu, Y.; Wu, Z. A doping element improving the properties of catalysis: in situ Raman spectroscopy insights into Mn−doped NiMn layered double hydroxide for the urea oxidation reaction. Catal. Sci. Technol. 2022, 12, 4471−4485.
- 260 Liu, H.; Zhu, S.; Cui, Z.; Li, Z.; Wu, S.; Liang, Y. Ni2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale 2021, 13, 1759−1769.
- 261 Zhang, L.; Wang, L.; Lin, H.; Liu, Y.; Ye, J.; Wen, Y.; Chen, A.; Wang, L.; Ni, F.; Zhou, Z.; Sun, S.; Li, Y.; Zhang, B.; Peng, H. A Lattice-Oxygen-Involved Reaction Pathway to Boost Urea Oxidation. Angew. Chem. Int. Ed. 2019, 58, 16820−16825.
- 262 Liu, X. Y.; Qin, H. H.; Wang, G. X.; Li, Q. J.; Huang, Q. S.; Wen, Z. H.; Mao, S. Co-doped Ni−Mo oxides: highly efficient and robust electrocatalysts for urea electrooxidation assisted hydrogen production. J. Mater. Chem. A 2022, 10, 16825−16833.
- 263 Huang, C.; Zhou, Q.; Yu, L.; Duan, D.; Cao, T.; Qiu, S.; Wang, Z.; Guo, J.; Xie, Y.; Li, L.; Yu, Y. Functional Bimetal Co-Modification for Boosting Large−Current−Density Seawater Electrolysis by Inhibiting Adsorption of Chloride Ions. Adv. Energy Mater. 2023, 13, 2301475.
- 264 Zhuang, L.; Li, J.; Wang, K.; Li, Z.; Zhu, M.; Xu, Z. Structural Buffer Engineering on Metal Oxide for Long−Term Stable Seawater Splitting. Adv. Funct. Mater. 2022, 32, 2201127.
- 265 Qin, S.; Zhao, Z.; Sun, J.; Zhang, Z.; Meng, X. Fe-NiO/MoO2 and in−situ reconstructed Fe, Mo−NiOOH with enhanced negatively charges of oxygen atoms on the surface for salinity tolerance seawater splitting. Nano Energy 2024, 128, 109921.
- 266 Zhang, S.; Xu, W.; Chen, H.; Yang, Q.; Liu, H.; Bao, S.; Tian, Z.; Slavcheva, E.; Lu, Z. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen. Adv. Mater. 2024, 2311322.
- 267 Zhang, Y.; Lei, Y.; Yan, Y.; Cai, W.; Huang, J.; Lai, Y.; Lin, Z. Enhancing hydrogen production capability from urine−containing sewage through optimization of urea oxidation pathways. Appl. Catal. B: Environ. 2024, 353, 124064.