Carbonylation Reactions of a Metallapentalyne: Synthesis of Its Ester and Amide Derivatives
Yongfa Zhu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorDafa Chen
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Ming Luo
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Haiping Xia
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYongfa Zhu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Search for more papers by this authorDafa Chen
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Ming Luo
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Haiping Xia
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005 China
Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Carbonylation reactions are a valuable synthetic method to construct carbonyl compounds and carbonylation reactions of aryl halides stand out as a highly significant tool for generating carbonyl substituted arenes. However, the important reactions have never been realized in aromatic metallacycles. Herein, we present the first carbonylation reactions of metallaaromatics, specifically alkoxycarbonylation and aminocarbonylation reactions of an osmapentalyne. During the carbonylation process, the electronic and steric properties of nucleophiles are regarded as critical factors. The alcohols with bulky substituents (isopropanol) require more reaction time and tert-butyl alcohol is inert in the reaction. Comparatively, amines, being stronger nucleophiles, exhibit divergent behaviors. Bulky amines undergo aminocarbonylation, whereas small amines prefer direct nucleophilic additions. Control experiments revealed that the intermediate derived from coupling of metal carbyne with CO plays a significant role in the carbonylation reaction. According to these observations, a divergent pathway for the reaction is proposed. Furthermore, the photophysical properties of these carbonyl-functionalized osmapentalene complexes are studied, and the maximum absorption peak of compound with a carboxylic group exhibits a significant red-shift due to the smaller HOMO-LUMO gap. These findings contribute to expanding the reactivity of metallaaromatics and offer new opportunities for the synthesis of carbonyl-functionalized metallacycles.
Supporting Information
Filename | Description |
---|---|
cjoc_202400409_sm_suppl.pdfPDF document, 7.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds, Eds.: J. Mortier, Wiley, Hoboken, 2016.
- 2 Chen, D.; Hua, Y.; Xia, H. Metallaaromatic Chemistry: History and Development. Chem. Rev. 2020, 120, 12994−13086.
- 3 Thorn, D. L.; Hoffmann, R. Delocalization in Metallocycles. Nouv. J. Chim. 1979, 3, 39−45.
- 4(a) Zhang, Y.; Yu, C.; Huang, Z.; Zhang, W.-X.; Ye, S.; Wei, J.; Xi, Z. Metalla-aromatics: Planar, Nonplanar, and Spiro. Acc. Chem. Res. 2021, 54, 2323−2333; (b) Luo, M.; Chen, D.; Li, Q.; Xia, H. Unique Properties and Emerging Applications of Carbolong Metallaaromatics. Acc. Chem. Res. 2023, 56, 924−937.
- 5
Metallabenzenes: An Expert View, Eds.: L. J. Wright, Wiley, Hoboken, 2017.
10.1002/9781119068075 Google Scholar
- 6(a) Jia, G. Our Journey to the Chemistry of Metallabenzynes. Organometallics 2013, 32, 6852−6866; (b) Chen, J.; Jia, G. Recent development in the chemistry of transition metal-containing metallabenzenes and metallabenzynes. Coord. Chem. Rev. 2013, 257, 2491−2521.
- 7 Wei, J.; Zhang, W.-X.; Xi, Z. The aromatic dianion metalloles. Chem. Sci. 2018, 9, 560−568.
- 8 Zhu, C.; Xia, H. Carbolong Chemistry: A Story of Carbon Chain Ligands and Transition Metals. Acc. Chem. Res. 2018, 51, 1691−1700.
- 9(a) Rickard, C. E. F.; Roper, W. R.; Woodgate, S. D.; Wright, L. J. Electrophilic Aromatic Substitution Reactions of a Metallabenzene: Nitration and Halogenation of the osmabenzene [Os{C(SMe)CHCHCHCH}I(CO)(PPh3)2]. Angew. Chem. Int. Ed. 2000, 39, 750−752;
10.1002/(SICI)1521-3773(20000218)39:4<750::AID-ANIE750>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar(b) Wang, T.; Li, S.; Zhang, H.; Lin, R.; Han, F.; Lin, Y.; Wen, T. B.; Xia, H. Annulation of Metallabenzenes: From Osmabenzene to Osmabenzothiazole to Osmabenzoxazole. Angew. Chem. Int. Ed. 2009, 48, 6453−6456; (c) Clark, G. R.; Ferguson, L. A.; McIntosh, A. E.; Söhnel, T.; Wright, L. J. Functionalization of Metallabenzenes through Nucleophilic Aromatic Substitution of Hydrogen. J. Am. Chem. Soc. 2010, 132, 13443−13452; (d) Clark, G. R.; Johns, P. M.; Roper, W. R.; Söhnel, T.; Wright, L. J. Regioselective Mono-, Di-, and Trifunctionalization of Iridabenzofurans through Electrophilic Substitution Reactions. Organometallics 2010, 30, 129−138; (e) Lin, R.; Zhang, H.; Li, S.; Wang, J.; Xia, H. New Highly Stable Metallabenzenes via Nucleophilic Aromatic Substitution Reaction. Chem. - Eur. J. 2011, 17, 4223−4231; (f) Lin, R.; Zhao, J.; Chen, H.; Zhang, H.; Xia, H. Interconversion of Metallabenzenes and Cyclic η2-Allene-Coordinated Complexes. Chem. - Asian J. 2012, 7, 1915−1924; (g) Han, F.; Wang, T.; Li, J.; Zhang, H.; Xia, H. m-Metallaphenol: Synthesis and Reactivity Studies. Chem. - Eur. J. 2014, 20, 4363-4372.
- 10(a) Wen, T. B.; Ng, S. M.; Hung, W. Y.; Zhou, Z. Y.; Lo, M. F.; Shek, L.-Y.; Williams, I. D.; Lin, Z.; Jia, G. Protonation and Bromination of an Osmabenzyne: Reactions Leading to the Formation of New Metallabenzynes. J. Am. Chem. Soc. 2003, 125, 884–885; (b) Hung, W. Y.; Liu, B.; Shou, W.; Wen, T. B.; Shi, C.; Sung, H. H.-Y.; Williams, I. D.; Lin, Z.; Jia, G. Electrophilic Substitution Reactions of Metallabenzynes. J. Am. Chem. Soc. 2011, 133, 18350−18360.
- 11(a) Cai, Y.; Hua, Y.; Lu, Z.; Lan, Q.; Lin, Z.; Fei, J.; Chen, Z.; Zhang, H.; Xia, H. Electrophilic aromatic substitution reactions of compounds with Craig-Möbius aromaticity. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2102310118; (b) Li, J.; Lu, Z.; Hua, Y.; Chen, D.; Xia, H. Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene. Chem. Commun. 2021, 57, 8464-8467.
- 12 Lin, Z.; Cai, Y.; Zhang, Y.; Zhang, H.; Xia, H. Heterocyclic Suzuki- Miyaura coupling reaction of metalla-aromatics and mechanistic analysis of site selectivity. Chem. Sci. 2023, 14, 1227−1233.
- 13 Lu, Z.; Zhu, C.; Cai, Y.; Zhu, J.; Hua, Y.; Chen, Z.; Chen, J.; Xia, H. Metallapentalenofurans and Lactone-Fused Metallapentalynes. Chem. - Eur. J. 2017, 23, 6426−6431.
- 14(a) Xu, B.; Mao, W.; Wu, C.; Li, J.; Lu, Z.; Luo, M.; Liu, L. L.; Mao, L.; Chen, D.; Xia, H. A One-Pot Strategy for the Synthesis of β-Substituted Rhoda- and Irida-Carbolong Complexes. Chin. J. Chem. 2022, 40, 1777−1784; (b) Chu, Z.; Li, J.; Chen, D.; Lu, Z.; Meng, W.; Luo, M.; Xia, H. Formal [2+1] Cycloadditions of a Metallacyclopentadiene Unit with Alkynes: Constructing Tetracyclic Conjugated Frameworks with Bridgehead Metals. Chin. J. Chem. 2023, 41, 1987−1993.
- 15(a) Landorf, C. W.; Haley, M. M. Recent Advances in Metallabenzene Chemistry. Angew. Chem. Int. Ed. 2006, 45, 3914−3936; (b) Frogley, B. J.; Wright, L. J. Fused-ring metallabenzenes. Coord. Chem. Rev. 2014, 270−271, 151−166.
- 16For recent reviews: (a) Brennführer, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds. Angew. Chem. Int. Ed. 2009, 48, 4114−4133; (b) Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. The Chemistry of CO: Carbonylation. Chem 2019, 5, 526−552; (c) Kalck, P.; Le Berre, C.; Serp, P. Recent Advances in the Methanol Carbonylation Reaction into Acetic Acid. Coord. Chem. Rev. 2020, 402, 213078; (d) Zhang, S.; Neumann, H.; Beller, M. Synthesis of α,β-unsaturated Carbonyl Compounds by Carbonylation Reactions. Chem. Soc. Rev. 2020, 49, 3187−3210; (e) Zhu, C.; Liu, J.; Li, M.-B.; Backvall, J.-E. Palladium-Catalyzed Oxidative Dehydrogenative Carbonylation Reactions Using Carbon Monoxide and Mechanistic Overviews. Chem. Soc. Rev. 2020, 49, 341−353; (f) Wang, P.; Yang, D.; Liu, H. Recent Advances on Carbonylation of 1,3-Dienes. Chin. J. Org. Chem. 2021, 41, 3379-3389 (in Chinese); (g) Wu, Z.; Cheng, C.; Zhang, Y. Transition Metal-Catalyzed Reactions of C–H Bonds with Carbon Monoxide. Chin. J. Org. Chem. 2021, 41, 2155−2174 (in Chinese); (h) Tian, B.; Chen, P.; Liu, G. Palladium-Catalyzed Intermolecular Carbonylation-Based Difunctionalization of Alkenes. Synlett 2022, 33, 927−938; (i) Liu, Y.; Chen, Y.-H.; Yi, H.; Lei, A. An Update on Oxidative C–H Carbonylation with CO. ACS Catal. 2022, 12, 7470−7485; (j) Xu, J.-X.; Wang, L.-C.; Wu, X.-F. Non-Noble Metal-Catalyzed Carbonylative Multi-Component Reactions. Chem. - Asian J. 2022, 17, e202200928; (k) Zhang, Y.; Wu, X.-F. Switchable Radical Carbonylation by Philicity Regulation. Chin. J. Org. Chem. 2022, 42, 3007−3009 (in Chinese); (l) Gu, X.-W.; Wu, X.-F. Abundant Metal-Catalyzed Carbonylation of Alkyl Bromides and Alkyl Chlorides. Org. Chem. Front. 2023, 10, 1587−1591; (m) Tian, Q.; Yin, X.; Sun, R.; Wu, X.-F.; Li, Y. The Lower the Better: Efficient Carbonylative Reactions under Atmospheric Pressure of Carbon Monoxide. Coord. Chem. Rev. 2023, 475, 214900; (n) Li, W.; Jiang, D.; Wang, C.; Cheng, L.-J. Recent Advances in Base-Metal-Catalyzed Carbonylation of Unactivated Alkyl Electrophiles. Chin. J. Chem. 2023, 41, 3419–3432.
- 17For recent examples: (a) Cheng, S.; Zhu, Q. β-Carbonyl-Directed Asymmetric Alkoxy- and Hydroxy-carbonylation of Functionalized Alkenes. Chin. J. Org. Chem. 2021, 41, 3751−3752 (in Chinese); (b) Tian, D.; Tang, W. Palladium-Catalyzed Asymmetric Markovnikov Hydroaminocarbonylation of Alkenes. Chin. J. Org. Chem. 2021, 41, 865−866 (in Chinese); (c) Wang, P.; Yang, D.; Liu, H. Recent Advances on the Synthesis of β-Lactams by Involving Carbon Monoxide. Chin. J. Org. Chem. 2021, 41, 3448−3458 (in Chinese); (d) Zhao, F.; Ai, H.-J.; Wu, X.-F. Radical Carbonylation under Low CO Pressure: Synthesis of Esters from Activated Alkylamines at Transition Metal-Free Conditions. Chin. J. Chem. 2021, 39, 927−932; (e) Chen, J.; Deng, G.; Wang, Y.; Zhu, S. Facile Synthesis of Chiral α-Hydroxy Ketones by a Ni-Catalyzed Multicomponent Hydrometallation–CO Insertion–Enantioconvergent Alkylation Cascade. Chin. J. Chem. 2022, 41, 294−300; (f) Gu, X.-W.; Zhang, Y.; Zhao, F.; Ai, H.-J.; Wu, X.-F. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex. Chin. J. Catal. 2023, 48, 214−223; (g) Wang, C.; Liu, N.; Wu, X.; Qu, J.; Chen, Y. Nickel-Catalyzed Regiodivergent Acylzincation of Styrenes with Organozincs and CO. Chin. J. Chem. 2023, 42, 599−604; (h) Zhang, Y.; Cao, Q.; Xi, Y.; Wu, X.; Qu, J.; Chen, Y. Nickel-Catalyzed Carbonylative Negishi Cross-Coupling of Unactivated Secondary Alkyl Electrophiles with 1 atm CO Gas. J. Am. Chem. Soc. 2024, 146, 7971−7978.
- 18For references on carbonylation reactions of transition metal carbyne complexes: (a) Kreissl, F. R.; Frank, A.; Schubert, U.; Lindner, T. L.; Huttner, G. Carbonyl-η-cyclopentadienyl-(4-methylphenylketenyl)-bis(trimethylphosphane) tungsten—A Novel, Stable Transition Metal-Substituted Ketene. Angew. Chem. Int. Ed. Engl. 1976, 15, 632−633;
(b) Martin-Gil, J.; Howard, J. A. K.; Navarro, R.; Stone, F. G. A. Carbon Monoxide Transfer to a Metal Co-ordinated Carbyne Ligand: X-Ray Crystal Structure of [Mn2{μ-C(CO)C6H4-Me-p}(CO)6(η- C5H5)]·0·5Et2O. J. Chem. Soc., Chem. Commun. 1979, 1168−1169;
10.1039/C39790001168 Google Scholar(c) Carnahan, E. M.; Protasiewicz, J. D.; Lippard, S. J. The 15 years of reductive coupling: what have we learned? Acc. Chem. Res. 1993, 26, 90−97; (d) Engel, P. F.; Pfeffer, M. Carbon-Carbon and Carbon-Heteroatom Coupling Reactions of Metallacarbynes. Chem. Rev. 1995, 95, 2281–2309; (e) Tang, Y.; Sun, J.; Chen, J. Unexpected Reactions of Cationic Carbyne Complexes of Manganese and Rhenium with Mixed-Dimetal Carbonyl Anions. A New Route to Dimetal Bridging Carbyne Complexes. Organometallics 1998, 17, 2945−2952; (f) Tang, Y.; Sun, J.; Chen, J. Reactions of Cationic Carbyne Complexes of Manganese and Rhenium with Carbonylmetal Anions Containing Cyclopentadienyl, PPh3, and NO Ligands. A Route to Dimetal Bridging Carbyne Complexes. Organometallics 2000, 19, 72−80; (g) Zhang, L.; Xiao, N.; Xu, Q.; Sun, J.; Chen, J. Unusual Reactions of Cationic Carbyne Complexes of Manganese and Rhenium with the Carbonylmetal Anions [Ir(CO)4]- and [Ru(CO)4]2-. Novel Route to Heteropolymetallic Bridging Carbyne Complexes. Organometallics 2005, 24, 5807−5816; (h) Crudden, C. M.; Maekawa, Y.; Clarke, J. J.; Ida, T.; Fukumoto, Y.; Chatani, N.; Murai, S. Ru3(CO)12-Catalyzed Reaction of 1,6-Diynes, Carbon Monoxide, and Water via the Reductive Coupling of Carbon Monoxide. Org. Lett. 2020, 22, 8747−8751; (i) Rao, J.; Dong, S.; Yang, C.; Liu, Q.; Leng, X.; Wang, D.; Zhu, J.; Deng, L. A Triplet Iron Carbyne Complex. J. Am. Chem. Soc. 2023, 145, 25766–25775.
- 19 Zhu, C.; Luo, M.; Zhu, Q.; Zhu, J.; Schleyer, P. v. R.; Wu, J. I.-C.; Lu, X.; Xia, H. Planar Möbius Aromatic Pentalenes Incorporating 16 and 18 Valence Electron Osmiums. Nat. Commun. 2014, 5, 3265.
- 20(a) Hua, Y.; Luo, M.; Lu, Z.; Zhang, H.; Chen, D.; Xia, H. Experimental and theoretical evidences for the formation of transition metal complexes with five coplanar metal-carbon sigma bonds. Natl. Sci. Rev. 2023, 10, nwad325; (b) Tang, C.; Zhang, S.; Lu, Z.; Li, Q.; Luo, M.; Chen, D.; Xia, H. Construction of a Metallacyclopentadiene Ring through the Attack of Carbanions to M≡C Bond Followed by C—H Activation. Chin. J. Chem. 2024, 42, 235−242.
- 21(a) Hill, A. F.; Malget, J. M.; White, A. J. P.; Williams, D. J. A chloroalkyne complex from the coupling of alkylidyne and carbonyl ligands. Chem. Commun. 1996, 721−722; (b) Wadepohl, H.; Arnold, U.; Pritzkow, H.; Calhorda, M. J.; Veiros, L. F. Interplay of ketenyl and nitrile ligands on d6-transition metal centres. Acetonitrile as an end-on (two-electron) and a side-on (four-electron) ligand. J. Organomet. Chem. 1999, 587, 233−243; (c) Stone, K. C.; Jamison, G. M.; White, P. S.; Templeton, J. L. Reactions of tungsten phosphonium carbyne complexes with aryloxide nucleophiles to form aryloxycarbyne and η2-ketenyl complexes. Inorg. Chim. Acta 2002, 330, 161−172; (d) Bailey, G. A.; Agapie, T. Terminal Mo Carbide and Carbyne Reactivity: H2 Cleavage, B–C Bond Activation, and C–C Coupling. Organometallics 2021, 40, 2881−2887.
- 22(a) Geoffroy, G. L.; Bassner, S. L. Interaction of Ketenes with Organometallic Compounds: Ketene, Ketenyl, and Ketenylidene Complexes. Adv. Organomet. Chem. 1988, 28, 1–83;
(b) Tidwell, T. T. Spectroscopy and Physical Properties of Ketenes. Ketenes II, Wiley, Hoboken, 2005, pp. 27−53;
10.1002/0471767670.ch2 Google Scholar(c) Bertani, R.; Casarin, M.; Ganis, P.; Maccato, C.; Pandolfo, L.; Venzo, A.; Vittadini, A.; Zanotto, L. Organometallic Chemistry of Ph3PCCO. Synthesis, Characterization, X-ray Structure Determination, and Density Functional Study of the First Stable Bis-η1-ketenyl Complex, trans-[PtCl2{η1-C(PPh3)CO}2]. Organometallics 2000, 19, 1373−1383; (d) Gonsales, S. A.; Ghiviriga, I.; Abboud, K. A.; Veige, A. S. Carbon dioxide cleavage across a tungsten-alkylidyne bearing a trianionic pincer-type ligand. Dalton Trans. 2016, 45, 15783−15785; (e) Wei, R.; Wang, X. F.; Ruiz, D. A.; Liu, L. L. Stable Ketenyl Anions via Ligand Exchange at an Anionic Carbon as Powerful Synthons. Angew. Chem. Int. Ed. 2023, 62, e202219211.
- 23(a) Eberl, K.; Wolfgruber, M.; Sieber, W.; Kreissl, F. R. Übergangsmetallketen-verbindungen IX. Übergangsmetall-substituierte carbonsäurederivate. J. Organomet. Chem. 1982, 236, 171−176; (b) Baker, P. K.; Barker, G. K.; Gill, D. S.; Green, M.; Orpen, A. G.; Williams, I. D.; Welch, A. J. Reactions of Co-ordinated Ligands. Part 45. Ligand Displacement and Oxidative Reactions of the Carbyne Complex [Mo(≡CCH2But){P(OMe)3}2(η-C5H5)]; Crystal and Molecular Structures of [Mo{η3-RN=C C(CH2But) 2.C=NR}-(CNR)2(η-C5H5)] (R = 2,6-Me2C6H3), [Mo(C=CHBut)I{P(OMe)3}2(η-C5H5)], and [Mo{ =C(CH2But)P(O)(OMe)2}{P(OMe)3}(η-C5H5)]. J. Chem. Soc., Dalton Trans. 1989, 1321−1331; (c) Li, M.-M.; Wei, Y.; Liu, J.; Chen, H.-W.; Lu, L.-Q.; Xiao, W.-J. Sequential Visible-Light Photoactivation and Palladium Catalysis Enabling Enantioselective [4+2] Cycloadditions. J. Am. Chem. Soc. 2017, 139, 14707−14713; (d) Wang, K.; Yu, J.; Shao, Y.; Tang, S.; Sun, J. Forming All-Carbon Quaternary Stereocenters by Organocatalytic Aminomethylation: Concise Access to β2,2-Amino Acids. Angew. Chem. Int. Ed. 2020, 59, 23516−23520.
- 24 Bordwell, F. G.; Fried, H. E. Acidities of the hydrogen-carbon protons in carboxylic esters, amides, and nitriles. J. Org. Chem. 1981, 46, 4327−4331.
- 25(a) Luo, M.; Hua, Y.; Zhuo, K.; Long, L.; Lin, X.; Deng, Z.; Lin, Z.; Zhang, H.; Chen, D.; Xia, H. Carbolong Chemistry: Planar CCCCX-Type (X = N, O, S) Pentadentate Chelates by Formal [3+1] Cycloadditions of Metalla-Azirines with Terminal Alkynes. CCS Chem. 2020, 2, 758−763; (b) Zhao, T.; Wang, H.; Pu, M.; Lai, H.; Chen, H.; Zhu, Y.; Zheng, N.; He, F. Tuning the Molecular Weight of Chlorine-Substituted Polymer Donors for Small Energy Loss. Chin. J. Chem. 2021, 39, 1651−1658; (c) Wu, S.; Tao, W.; Wang, G.; Zhao, B.; Chen, H. Synthesis and Optoelectronic Properties of A-D-A Type Small Molecule Acceptors Containing Isatin-Fused Acenaphthenequinone Imide Terminal Groups. Chin. J. Org. Chem. 2021, 41, 2019−2028 (in Chinese); (d) Li, J.; Zhuang, G.; Huang, Q.; Wang, J.; Wu, Y.; Du. P. A Conjugated Molecular Crown Containing a Single Pyrenyl Unit: Synthesis, Characterization, and Photophysical Properties. Chin. J. Org. Chem. 2021, 41, 2401−2407 (in Chinese); (e) Wang, Z.; Cai, G.; Xue, P.; Liu, Z.; Jia, B.; Li, N.; Wang, J.; Lu, X.; Lin, Y.; Wang, G.; Zhan, X. Enhancing Photovoltaic Performance of Asymmetric Fused-Ring Electron Acceptor by Expanding Pyrrole to Pyrrolo[3,2-b]pyrrole. Chin. J. Chem. 2022, 40, 2861−2866; (f) Lai, X.; Chen, S.; Gu, X.; Lai, H.; Wang, Y.; Zhu, Y.; Wang, H.; Qu, J.; Kyaw, A. K. K.; Xia, H.; He, F. Phenanthroline-Carbolong Interface Suppress Chemical Interactions with Active Layer Enabling Long-time Stable Organic Solar Cells. Nat. Commun. 2023, 14, 3571.