Secondary Aggregation Induced by Volatile Additive for Improved Exciton Diffusion and Charge Separation in High Efficiency Organic Photovoltaic Devices
Yufeng Ge
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorXuewu Li
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorMingxu Zhou
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorPeng Lu
School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Xiaotao Hao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia
E-mail: [email protected]Search for more papers by this authorYufeng Ge
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorXuewu Li
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorMingxu Zhou
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorPeng Lu
School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Xiaotao Hao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
The morphology of the active layer plays a crucial role in the performance of organic photovoltaics. Although volatile additives are commonly used to manipulate the morphology, their mechanism of action remains poorly understood. In this study, we conducted a systematic exploration of the mechanism of the traditional volatile additive 1-CN in film formation kinetics of typical PM6:Y6 system. We found that 1-CN induces a secondary aggregation effect, improving film morphology and promoting face-on crystalline orientation. Through elucidating its impact on exciton dynamics, we established a link between morphology optimization and increased exciton diffusion length and accelerated charge separation. Our findings unveil the unique mechanism of action of volatile additive, providing a new perspective for improving the morphology and enhancing the performance of organic photovoltaic devices.
Supporting Information
Filename | Description |
---|---|
cjoc202400397-sup-0001-supinfo.pdfPDF document, 3.1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205.
- 2 Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Adv. Mater. 2016, 28, 7821–7861.
- 3 Yin, H.; Yan, J.; Ho, J. K. W.; Liu, D.; Bi, P.; Ho, C. H. Y.; Hao, X.; Hou, J.; Li, G.; So, S. K. Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors. Nano Energy 2019, 64, 103950.
- 4 Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-Performance Organic Bulk-Heterojunction Solar Cells Based on Multiple-Donor or Multiple-Acceptor Components. Adv. Mater. 2018, 30, 1705706.
- 5 Bi, P.; Wang, J.; Cui, Y.; Zhang, J.; Zhang, T.; Chen, Z.; Qiao, J.; Dai, J.; Zhang, S.; Hao, X.; Wei, Z.; Hou, J. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics. Adv. Mater. 2023, 35, 2210865.
- 6 Xu, Y.; Wang, J.; Yao, H.; Bi, P.; Zhang, T.; Xu, J.; Hou, J. An Asymmetric Non-fullerene Acceptor with Low Energy Loss and High Photovoltaic Efficiency. Chin. J. Chem. 2023, 41, 1045–1050.
- 7 Li, S.; Ding, Y.; Xu, L.; Zhao, W.; Zhang, J.; Qin, J.; Zhang, Y.; Zhao, J.; He, C.; Peng, Q.; Hou, J. The Key Role of Subtle Substitution for a High-Performance Ester-Modified Oligothiophene-Based Polymer Used in Photovoltaic Cells. Chin. J. Chem. 2022, 40, 2867–2874.
- 8 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151.
- 9 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.
- 10 Tian, H.; Xu, W.; Liu, Z.; Xie, Y.; Zhang, W.; Xu, Y.; Jeong, S. Y.; Zhang, F.; Weng, N.; Zhang, Z.; Wang, K.; Sun, Q.; Zhang, J.; Li, X.; Du, X.; Hao, X.; Woo, H. Y.; Ma, X.; Zhang, F. Over 18.8% Efficiency of Layer-By-Layer Organic Photovoltaics Enabled by Ameliorating Exciton Utilization in Acceptor Layer. Adv. Funct. Mater. 2024, 34, 2313751.
- 11 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420.
- 12 Liu, Z.; Ma, X.; Xu, W.; Zhang, S.; Xu, C.; Jeong, S. Y.; Woo, H. Y.; Zhou, Z.; Zhang, F. 15.28% efficiency of conventional layer-by-layer all-polymer solar cells superior to bulk heterojunction or inverted cells. Chem. Eng. J. 2022, 450, 138146.
- 13 Xu, W.; Zhang, M.; Liu, Z.; Tian, H.; Zhang, W.; Sun, S.; Jeong, S. Y.; Zhang, F.; Li, X.; Sun, Q.; Hao, X.; Woo, H. Y.; Ma, X.; Zhang, F. A nonfullerene acceptor as a solid additive realizing a record efficiency of 17.74% in quasi-layered all-polymer solar cells. J. Mater. Chem. A 2024, 12, 4077–4085.
- 14 Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746–752.
- 15 Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Li, H.; Hou, J.; Chen, H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645.
- 16 Lu, H.; Liu, W.; Ran, G.; Liang, Z.; Li, H.; Wei, N.; Wu, H.; Ma, Z.; Liu, Y.; Zhang, W.; Xu, X.; Bo, Z. High-Pressure Fabrication of Binary Organic Solar Cells with High Molecular Weight D18 Yields Record 19.65 % Efficiency. Angew. Chem. Int. Ed. 2023, 62, e202314420.
- 17
Lu, H.; Wang, H.; Ran, G.; Liu, W.; Huang, H.; Jiang, X.; Liu, Y.; Xu, X.; Bo, Z. Chlorinated Thiazole-Based Low-Cost Polymer Donors for High Efficiency Binary and Ternary Organic Solar Cells. CCS Chem. 2026, 6, 1757–1766.
10.31635/ccschem.023.202303239 Google Scholar
- 18 Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.
- 19 Yu, T.; Ma, D. Highly Efficient Nonfullerene Organic Solar Cells: Morphology Control and Characterizations. Sol. RRL 2024, 8, 2300751.
- 20 Zhou, K.; Xian, K.; Ma, R.; Liu, J.; Gao, M.; Li, S.; Liu, T.; Chen, Y.; Geng, Y.; Ye, L. Correlating miscibility, mechanical parameters, and stability of ternary polymer blends for high-performance solar cells. Energy Environ. Sci. 2023, 16, 5052–5064.
- 21 Wu, X.; Jiang, X.; Li, X.; Zhang, J.; Ding, K.; Zhuo, H.; Guo, J.; Li, J.; Meng, L.; Ade, H.; Li, Y. Introducing a Phenyl End Group in the Inner Side Chains of A-DA'D-A Acceptors Enables High-Efficiency Organic Solar Cells Processed with Nonhalogenated Solvent. Adv. Mater. 2023, 35, 2302946.
- 22 Cheng, H.-W.; Mohapatra, A.; Chang, Y.-M.; Liao, C.-Y.; Hsiao, Y.-T.; Chen, C.-H.; Lin, Y.-C.; Huang, S.-Y.; Chang, B.; Yang, Y.; Chu, C.-W.; Wei, K.-H. High-Performance Organic Solar Cells Featuring Double Bulk Heterojunction Structures with Vertical-Gradient Selenium Heterocyclic Nonfullerene Acceptor Concentrations. ACS Appl. Mater. Interfaces 2021, 13, 27227–27236.
- 23 Jiang, X.; Gillett, A. J.; Zheng, T.; Song, X.; Heger, J. E.; Sun, K.; Spanier, L. V.; Guo, R.; Liang, S.; Bernstorff, S.; Müller-Buschbaum, P. Operando study of the influence of small molecule acceptors on the morphology induced device degradation of organic solar cells with different degrees of π–π stacking. Energy Environ. Sci. 2023, 16, 5970–5981.
- 24 Zheng, Z.; He, E.; Wang, J.; Qin, Z.; Niu, T.; Guo, F.; Gao, S.; Ma, Z.; Zhao, L.; Lu, X.; Xue, Q.; Cao, Y.; Mola, G. T.; Zhang, Y. Revealing the role of solvent additives in morphology and energy loss in benzodifuran polymer-based non-fullerene organic solar cells. J. Mater. Chem. A 2021, 9, 26105–26112.
- 25 Zhang, H.; Ran, G.; Cui, X.; Liu, Y.; Yin, Z.; Li, D.; Ma, X.; Liu, W.; Lu, H.; Liu, R.; Cai, L.; Zhang, W.; Guo, S.; Li, H.; Yu, J.; Lin, Y.; Liu, Y.; Lu, G.; Ma, Z.; Cheng, P.; Bo, Z. Mitigating Exciton Recombination Losses in Organic Solar Cells by Engineering Nonfullerene Molecular Crystallization Behavior. Adv. Energy Mater. 2023, 13, 2302063.
- 26 Cheng, P.; Ye, L.; Zhao, X.; Hou, J.; Li, Y.; Zhan, X. Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy Environ. Sci. 2014, 7, 1351–1356.
- 27 Zheng, Y.; Wang, G.; Huang, D.; Kong, J.; Goh, T.; Huang, W.; Yu, J.; Taylor, A.D. Binary Solvent Additives Treatment Boosts the Efficiency of PTB7:PCBM Polymer Solar Cells to Over 9.5%. Sol. RRL 2018, 2, 1700144.
- 28 Kim, M. S.; Jang, W.; Nguyen, T.-Q.; Wang, D. H. Morphology Inversion of a Non-Fullerene Acceptor Via Adhesion Controlled Decal-Coating for Efficient Conversion and Detection in Organic Electronics. Adv. Funct. Mater. 2021, 31, 2103705.
- 29 Zhao, Q.; Liu, J.; Wang, H.; Li, M.; Zhou, K.; Yang, H.; Han, Y. Balancing the H- and J-aggregation in DTS(PTTh2)2/PC70BM to yield a high photovoltaic efficiency. J. Mater. Chem. C 2015, 3, 8183–8192.
- 30 Zhang, X.; Wang, H.; Li, D.; Chen, M.; Mao, Y.; Du, B.; Zhuang, Y.; Tan, W.; Huang, W.; Zhao, Y.; Liu, D.; Wang, T. Modulation of J-Aggregation of Nonfullerene Acceptors toward Near-Infrared Absorption and Enhanced Efficiency. Macromolecules 2020, 53, 3747–3755.
- 31 Zhao, Q.; He, F. H- and J-aggregation of conjugated small molecules in organic solar cells. J. Energy Chem. 2024, 93, 174–192.
- 32 Munir, M.; Arbi, R.; Tan, J.; Oliveira, P.; Lee, S. I.; Scharber, M. C.; Sariciftci, N. S.; Xu, F.; Xu, G.; Turak, A. Leveraging Bromine-Induced Large Stokes Shift in Pyrrolidinium Perovskite Nanoparticles for Improved Organic Photovoltaic Performance. ACS Appl. Nano Mater. 2024, 7, 5405–5413.
- 33 Zhao, Q.; Lai, H.; Chen, H.; Li, H.; He, F. H- and J-aggregation inspiring efficient solar conversion. J. Mater. Chem. A 2021, 9, 1119–1126.
- 34 Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871.
- 35 Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138.
- 36 Peng, Z. X.; Zhang, Y. W.; Sun, X. K.; Zhao, W. C.; Bian, F. G.; Geng, Y. H.; Ye, L.; Yang, C. M. Real-Time Probing and Unraveling the Morphology Formation of Blade-Coated Ternary Nonfullerene Organic Photovoltaics with In Situ X-Ray Scattering. Adv. Funct. Mater. 2023, 33, 2213248.
- 37 Xue, J. W.; Naveed, H. B.; Zhao, H.; Lin, B. J.; Wang, Y. L.; Zhu, Q. L.; Wu, B. H.; Bi, Z. Z.; Zhou, X. B.; Zhao, C.; Zhou, K.; Ma, W. Kinetic processes of phase separation and aggregation behaviors in slot-die processed high efficiency Y6-based organic solar cells. J. Mater. Chem. A 2022, 10, 13439–13447.
- 38 Xia, X.; Mei, L.; He, C.; Chen, Z.; Yao, N.; Qin, M.; Sun, R.; Zhang, Z.; Pan, Y.; Xiao, Y.; Lin, Y.; Min, J.; Zhang, F.; Zhu, H.; Bredas, J.-L.; Chen, H.; Chen, X.-K.; Lu, X. Revealing the crystalline packing structure of Y6 in the active layer of organic solar cells: the critical role of solvent additives. J. Mater. Chem. A 2023, 11, 21895–21907.
- 39 Tamai, Y.; Matsuura, Y.; Ohkita, H.; Benten, H.; Ito, S. One-Dimensional Singlet Exciton Diffusion in Poly(3-hexylthiophene) Crystalline Domains. J. Phys. Chem. Lett. 2014, 5, 399–403.
- 40 Cui, F. Z.; Chen, Z. H.; Qiao, J. W.; Wang, T.; Lu, G. H.; Yin, H.; Hao, X. T. Ternary-Assisted Sequential Solution Deposition Enables Efficient All-Polymer Solar Cells with Tailored Vertical-Phase Distribution. Adv. Funct. Mater. 2022, 32, 2200478.
- 41 Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Zhang, C.; Fu, Z.; Jee, M. H.; Hao, X.; Woo, H. Y.; Sun, Y. Over 18% Efficiency of All-Polymer Solar Cells with Long-Term Stability Enabled by Y6 as a Solid Additive. Adv. Mater. 2023, 35, 2301906.
- 42 Tamai, Y.; Murata, Y.; Natsuda, S.; Sakamoto, Y. How to Interpret Transient Absorption Data?: An Overview of Case Studies for Application to Organic Solar Cells. Adv. Energy Mater. 2024, 14, 2301890.
- 43 Chan, C. C. S.; Ma, C.; Zou, X.; Xing, Z.; Zhang, G.; Yip, H.-L.; Taylor, R. A.; He, Y.; Wong, K. S.; Chow, P. C. Y. Quantification of Temperature-Dependent Charge Separation and Recombination Dynamics in Non-Fullerene Organic Photovoltaics. Adv. Funct. Mater. 2021, 31, 2107157.
- 44 Wang, R.; Zhang, C.; Li, Q.; Zhang, Z.; Wang, X.; Xiao, M. Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. J. Am. Chem. Soc. 2020, 142, 12751–12759.
- 45 Spano, F. C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439.
- 46 Bai, H.-R.; An, Q.; Jiang, M.; Ryu, H. S.; Yang, J.; Zhou, X.-J.; Zhi, H.-F.; Yang, C.; Li, X.; Woo, H. Y.; Wang, J.-L. Isogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously. Adv. Funct. Mater. 2022, 32, 2200807.
- 47 Zhang, X.; Qin, L.; Yu, J.; Li, Y.; Wei, Y.; Liu, X.; Lu, X.; Gao, F.; Huang, H. High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering. Angew. Chem. Int. Ed. 2021, 60, 12475–12481.