Magnetic Bistability in the Crystaline Fullerene Radical Salt
Huapeng Ruan
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Department College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi, 337055 China
Search for more papers by this authorKe Li
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorQuanchun Sun
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorMin Liu
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorZhongtao Feng
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXue Dong
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYue Zhao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Xinping Wang
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032 China
E-mail: [email protected], [email protected]Search for more papers by this authorHuapeng Ruan
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Department College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi, 337055 China
Search for more papers by this authorKe Li
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorQuanchun Sun
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorMin Liu
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorZhongtao Feng
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXue Dong
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYue Zhao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Xinping Wang
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210023 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032 China
E-mail: [email protected], [email protected]Search for more papers by this authorComprehensive Summary
Compounds with magnetic bistability is highly attractive for the construction of switches, thermal sensors, information-storage media and memory devices. Herein, we report a crystalline fullerene radical anion salt [Na(THF)5]C60 (1), obtained by the reduction of C60 with Na in solution, which exhibits magnetic bistability accompanied with one magnetostructural transition, giving low temperature (LT), high temperature (HT) phases and a metastable phase. Fullerene radical anions (C60•-) in the structure were found arranged into a three-dimensional close-packed honeycomb subnetwork with hollow channels occupied by complex cations [Na(THF)5]+ as spacers. The magnetic bistability is attributed to structural transitions as the LT−IT phase transition was associated with the orientational disorder of fullerene anions and the distortion of the complex cations [Na(THF)5]+ in the 3D packing of fullerene anions.
Supporting Information
Filename | Description |
---|---|
cjoc_202400283_sm_suppl.pdfPDF document, 1.2 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Kahn, O.; Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 1998, 279, 44–48; (b) Brooker, S. Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chem. Soc. Rev. 2015, 44, 2880–2892; (c) Fujinami, T.; Nishi, K.; Hamada, D.; Murakami, K.; Matsumoto, N.; Iijima, S.; Kojma, M.; Sunatsuki, Y. Scan rate dependent spin crossover iron(II) complex with two different relaxations and thermal hysteresis fac-[FeII(HLn-Pr)3]Cl·PF6 (HLn-Pr = 2-methylimidazol-4-yl-methylidene- amino-n-propyl ). Inorg. Chem. 2015, 54, 7291–7300; (d) Seredyuk, M. M.; Muňoz, C.; Castro, M.; Romero–Morcillo, T.; Gaspar, A. B.; Real, J. A. Unprecedented multi-stable spin crossover molecular material with two thermal memory channels. Chem. Eur. J. 2013, 19, 6591–6596; (e) Yamasaki, M.; Ishida, T. Heating-rate dependence of spin-crossover hysteresis observed in an iron(ii) complex having tris(2-pyridyl)methanol. J. Mater. Chem. C 2015, 3, 7784–7787.
- 2(a) Barclay, T. M.; Cordes, A. W.; George, N. A.; Haddon, R. C.; Itkis, M. E.; Mashuta, M. S.; Oakley, R. T.; Patenaude, G. W.; Reed, R. W.; Richardson, J. F.; Zhang, H. Redox, magnetic, and structural properties of 1,3,2-dithiazolyl radicals. a case study on the ternary heterocycle S3N5C4. J. Am. Chem. Soc. 1998, 120, 352–360; (b) Brusso, J. L.; Clements, O. P.; Haddon, R. C.; Itkis, M. E.; Leitch, A. A.; Oakley, R. T.; Reed, R. W.; Richardson, J. F. Bistabilities in 1,3,2-dithiazolyl radicals. J. Am. Chem. Soc. 2004, 126, 8256–8265; (c) Fujita, W.; Awaga, K. Room-temperature magnetic bistability in organic radical crystals. Science 1999, 286, 261–262; (d) Itkis, M. E.; Chi, X.; Cordes, A. W.; Haddon, R. C. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science 2002, 296, 1443–1445; (e) Lekin, K.; Winter, S. M.; Downie, L. E.; Bao, X.; Tse, J. S.; Desgreniers, S.; Secco, R. A.; Dube, P. A.; Oakley, R. T. Hysteretic spin crossover between a nisdithiazolyl radical and its hypervalent σ-dimer. J. Am. Chem. Soc. 2010, 132, 16212–16224; (f) Mills, M. B.; Wohlhauser, T.; Stein, B.; Verduyn, W. R.; Song, E.; Dechambenoit, P.; Rouzières, M.; Clérac, R.; Preuss, K. E. Magnetic Bistability in crystalline organic radicals: the interplay of H-bonding, pancake bonding, and electrostatics in 4-(2′-Benzimidazolyl)-1,2,3,5-dithiadiazolyl. J. Am. Chem. Soc. 2018, 140, 16904–16908; (g) Taponen, A. I.; Ayadi, A.; Lahtinen, M. K.; Oyarzabal, I.; Bonhommeau, S.; Rouzières, M.; Mathonieère, C.; Tuononen, H. M.; Clérac, R.; Mailman, A. Room-temperature magnetic bistability in a salt of organic radical ions. J. Am. Chem. Soc. 2021, 143, 15912–15917.
- 3 Li, T.; Tan, G.; Shao, D.; Li, J.; Zhang, Z.; Song, Y.; Sui, Y.; Chen, S.; Fang, Y.; Wang, X. Magnetic bistability in a discrete organic radical. J. Am. Chem. Soc. 2016, 138, 10092–10095.
- 4 Tuo, D.-H.; Chen, C.; Ruan, H.; Wang, Q.-Q.; Ao, Y.-F.; Wang, X.; Wang, D.-X. Magnetic multistability in an anion-radical pimer. Angew. Chem. Int. Ed. 2020, 59, 14040–14043.
- 5 O’Brien, E. S.; Russell, J. C.; Bartnof, M.; Christodoulides, A. D.; Lee, K.; DeGayner, J. A.; Paley, D. W.; McGaughey, A. J. H.; Ong, W.; Malen, J. A.; Zhu, X.-Y.; Roy. X. J. Am. Chem. Soc. 2018, 140, 15601–15605.
- 6(a) Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.; Murphy, D. W.; Glarum, S. H.; Palstra, T. T. M.; Ramirez, A. P.; Kortan, A. R. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601; (b) Ganin, A. Y.; Takabayashi, Y.; Khimyak, Y. Z.; Margadonna, S.; Tamai, A.; Rosseinsky, M. J.; Prassides, K. Bulk superconductivity at 38 K in a molecular system. Nat. Mat. 2008, 7, 367–371.
- 7(a) Stephens, P. W.; Bortel, G.; Faigel, G.; Tegze, M.; Jánossy, A.; Pekker, S.; Oszlanyi, G.; Forró, L. Polymeric fullerene chains in RbC60 and KC60. Nature 1994, 370, 636–639; (b) Bommeli, F.; Degiorgi, L.; Wachter, P.; Legeza, Ö.; Jánossy, A.; Oszlanyi, G.; Chauvet, O.; Forró, L. Metallic conductivity and metal-insulator transition in (AC60)n (A = K, Rb, and Cs) linear polymer fullerides. Phys. Rev. B 1995, 51, 14794–14797; (c) Zhu, Q.; Zhou, O.; Fischer, J. E.; McGhie, A. R.; Romanow, W. J.; Strongin, R. M.; Cichy, M. A.; Smith III, A. B. Unusual thermal stability of a site-ordered MC60 rocksalt structure (M = K, Rb, or Cs). Phys. Rev. B 1993, 47, 13948–13951; (d) Pekker, S.; Jánossy, A.; Mihaly, L.; Chauvet, O.; Carrard, M.; Forró, L. Single-crystalline (KC60)n: a conducting linear alkali fulleride polymer. Science 1994, 265, 1077–1078.
- 8(a) Tanaka, K.; Zakhidov, A. A.; Yoshizawa, K.; Okahara, K.; Yamabe, T.; Yakushi, K.; Kikuchi, K.; Suzuki, S.; Ikemoto, I.; Achiba, Y. Magnetic properties of TDAE-C60 and TDAE-C70, where TDAE is tetrakis(dimethylamino)ethylene. Phys. Rev. B 1993, 47, 7554–7557; (b) Allemand, P.-M.; Khemani, K. C.; Koch, A.; Wudl, F.; Holczer, K.; Donovan, S.; Grüner, G.; Thompson, J. D. Organic molecular soft feromagnetism in a fullerene C60. Science 1991, 253, 301–302; (c) Stephens, P. W.; Cox, D.; Lauher, J. W.; Mihaly, L.; Wiley, J. B.; Allmand, P.-M.; Hirsch, A.; Holczer, K.; Li, Q.; Thompson, J. D.; Wudl, F. Lattice structure of the fullerene ferromagnet TDAE–C60. Nature 1992, 355, 331–332.
- 9 Konarev, D. V.; Khasanov, S. S.; Otsuka, A.; Maesato, M.; Saito, G.; Lyubovskaya, R. N. A two-dimensional organic metal based on fullerene. Angew. Chem. Int. Ed. 2010, 49, 4829–4832.
- 10 Konarev, D. V.; Khasanov, S. S.; Otsuka, A.; Maesato, M.; Uruichi, M.; Yakushi, K.; Shevchun, A. F.; Yamochi, H.; Saito, G.; Lyubovskaya, R. N. Metallic and Mott insulating spin-frustrated antiferromagnetic states in ionic fullerene complexes with a two-dimensional hexagonal C60.− packing motif. Chem. Eur. J. 2014, 20, 7268–7277.
- 11 Kromer, A.; Wedig, U.; Roduner, E.; Jansen, M.; Amsharov, K. Y. Couterintuitive anisotropy of electron transport properties in KC60(THF)5·2THF fulleride. Angew. Chem. Int. Ed. 2013, 52, 12610–12614.
- 12 Amsharov, K. Y.; Krämer, D. C. Y.; Jansen, M. Direct observation of the transition from static to dynamic Jahn–Teller effects in the [Cs(THF)4]C60 fulleride. Angew. Chem. Int. Ed. 2011, 50, 11640–11643.
- 13
Douthwaite, R. E.; Brough, A. R.; Green, M. L. H. Synthesis and characterisation of NaC60·5thf. J. Chem. Soc., Chem. Commoun. 1994, 267–268.
10.1039/C39940000267 Google Scholar
- 14 Buchen, T.; Gütlich, P.; Sugiyarto, K. H.; Goodwin, H. A. High-spin → low-spin relaxation in [Fe(bpp)2](CF3SO3)2H2O after LIESST and themal spin-state trapping—dynamics of spin transition versus dynamics of phase transition. Chem. Eur. J. 1996, 2, 1134–1138.
- 15 Pinsky, M.; Avnir, D. Continuous symmetry measures. 5. the classical polyhedra. Inorg. Chem. 1998, 37, 5575–5582.
- 16(a) Schulz-Dobrick, M.; Panthöfer, M.; Jansen, M. Supramolecular arrangement of C60 and phenol into a square packing arrangement of π-π Interacting and hydrogen-bonded rods in C60·5C6H5OH. Eur. J. Inorg. Chem. 2005, 20, 4064–4069;
10.1002/ejic.200500256 Google Scholar(b) Konarev, D. V.; Kovalevsky, A. Y.; Litvinov, A. L.; Drichko, N. V.; Tarasov, B. P.; Coppens, P.; Lyubovskaya, R. N. Molecular complexes of fullerenes C60 and C70 with saturated amines. J. Solid State Chem. 2002, 168, 474–485; (c) Litvinov, A. L.; Konarev, D. V.; Kovalevsky, A. Y.; Neretin, I. S.; Slovokhotov, Y. L.; Coppens, P.; Lyubovskaya, R. N. Molecular complexes of fullerene C60 with aromatic hydrocarbons containing flexible phenyl substituents. CrystEngComm 2002, 4, 618–622; (d) Ishii, T.; Aizawa, N.; Kanehama, R.; Yamashita, M.; Matsuzaka, H.; Kodama, T.; Kikuchi, K.; Ikemoto, I. Syntheses and electronic structures of macrocyclic metal complexes with fullerene. Inorg. Chim. Acta 2001, 317, 81–90.
- 17(a) Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 2009, 65, 148–155; (b) Spek, A. L. PLATON-A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2005.
- 18 Monfared, H. H.; Vahedpour, M.; Yeganeh, M. M.; Ghorbanloo, M.; Mayer, P.; Janiak, C. Concentration dependent tautomerism in green [Cu(HL1)(L2)] and brown [Cu(L1)(HL2)] with H2L1 = (E)-N'-(2-hydroxy-3- methoxybenzylidene)benzoylhydrazone and HL2 = pyridine-4-carboxylic (isonicotinic) acid. Dalton Trans. 2011, 40, 1286–1294.