Four New Terpyridine Complexes Based Polyoxometalates with [W10O32]4– Anions as High-Efficiency Dual-Site Catalysis for Thioether Oxidation Reaction†
Yin Zhang
Junior Education Department, Changsha Normal University, Changsha, Hunan, 410100 China
Search for more papers by this authorCorresponding Author
Wei-Dong Yu
School of Science, Hunan University of Technology and Business, Changsha, Hunan, 410000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorFang-Qian Wang
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410000 China
Search for more papers by this authorXiangnan Wang
School of Science, Hunan University of Technology and Business, Changsha, Hunan, 410000 China
Search for more papers by this authorJiawan Zhou
School of Science, Hunan University of Technology and Business, Changsha, Hunan, 410000 China
Search for more papers by this authorCorresponding Author
Chao Liu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jun Yan
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorYin Zhang
Junior Education Department, Changsha Normal University, Changsha, Hunan, 410100 China
Search for more papers by this authorCorresponding Author
Wei-Dong Yu
School of Science, Hunan University of Technology and Business, Changsha, Hunan, 410000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorFang-Qian Wang
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410000 China
Search for more papers by this authorXiangnan Wang
School of Science, Hunan University of Technology and Business, Changsha, Hunan, 410000 China
Search for more papers by this authorJiawan Zhou
School of Science, Hunan University of Technology and Business, Changsha, Hunan, 410000 China
Search for more papers by this authorCorresponding Author
Chao Liu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jun Yan
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410000 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this author† Dedicated to the Special Issue of Emerging Investigators in 2023.
Comprehensive Summary
Polyoxometalates modified with complex cations have attracted increasing attention because of the fascinating properties and the controllable structures. By adjusting the synthesis conditions, four new terpyridine complexes based hybrid POMs, [(TPY-H)CuCl]4 [W10O32]·2DMF·2H2O (1), [(TPY-H)Cu(DMSO)(H2O)]2[W10O32]·2H2O (2), [(TPY-H)2Cu]2[W10O32]·6DMSO·8H2O (3) and [(TPY-Br)CuCl (DMSO)(H2O)]2[(TPY-Br)CuCl]2[W10O32]·2DMSO·4H2O (4), were prepared by using ‘one-pot’ method. Sing-crystal X-ray diffraction analyses, infrared radiation, etc., revealed the structural composition of compounds 1—4, which indicates that synthesis conditions have a directional regulatory effect on the compounds synthesis. Thioether oxidation catalytic reactions show 1—4 have good catalytic activities, and powder X-ray diffraction and thermogravimetry analysis show 1—4 have superduper catalytic stability. Moreover, 4 has better catalytic activity because of the different structure of terpyridine complexes. Therefore, a possible mechanism of dual-site catalysis by both cations and anions is proposed.
Supporting Information
Filename | Description |
---|---|
cjoc202300556-sup-0001-Supinfo.pdfPDF document, 2.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Miras, H. N.; Yan, J.; Long, D.-L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.
- 2 Liang, C.; Wang, X.; Yu, D.; Guo, W.; Qu, F. In-situ immobilization of a polyoxometalate metal-organic framework (NENU-3) on functionalized reduced graphene oxide for hydrazine sensing. Chin. J. Chem. 2021, 39, 2889–2897.
- 3 Wang, S.-S.; Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.
- 4 Zhang, Y.; Chen, J.; Razq, F.; Su, C.; Hou, X.; Huang, W.; Zhang, H. Polyoxometalate-incorporated host-guest framework derived layered double hydroxide composites for high-performance hybrid supercapacitor. Chin. J. Chem. 2023, 41, 75–82.
- 5 Yang, G.-P.; Li, K.; Hu, C.-W. Recent advances in uranium-containing polyoxometalates. Inorg. Chem. Front. 2022, 9, 5408–5433.
- 6 Zhang, Q.; Sun, Z.; Lim, C.-G.; QI, B.; Song, Y.-F. Latest progress in asymmetrically functionalized Anderson-type polyoxometalates. Inorg. Chem. Front. 2023, 10, 1659–1711.
- 7 Huang, X.; Gu, X.; Qi, Y.; Zhang, Y.; Shen, G.; Duan, W.; Gong, S.; Xue, Z.; Chen, Y. Decavanadate-based transition metal hybrids as bifunctional catalysts for sulfide oxidation and C-C bond construction. Chin. J. Chem. 2021, 39, 2495–2503.
- 8 Cameron, J. M. Guillemot, G.; Galambos, T.; Amin, S. S.; Hampson, E.; Haidaraly, K. M.; Newton, G. N.; Izzet, G. Supramolecular assemblies of organo-fuctionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328.
- 9 Li, K.; Liu, Y.-F.; Lin, X.-L.; Yang, G.-P. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg. Chem. 2022, 61, 6934–6942.
- 10
Zhang, W.-Y.; Lu, Y.; Li, Z.; Wang, Y.; Sun, X.-W.; Wang, Q.; Zhang, Z.; Liu, S.-X. Incorporation of polyoxometalate-based acid-base pair into a sulfonated MIL-101 for achieving proton-conduction materials with high proton conductivity and high stability. Tungsten 2022, 4, 130–137.
10.1007/s42864-021-00123-4 Google Scholar
- 11 Ment, X.; Wang, H.-N.; Song, S.-Y.; Zhang, H.-J. Proton-conducting crystalline porous materials. Chem. Soc. Rev. 2017, 46, 464–480.
- 12 Du, J.; Lang, Z.-L.; Ma, Y.-Y.; Tan, H.-Q.; Liu, B.-L.; Wang, Y.-H.; Kang, Z.-H.; Li, Y.-G. Polyoxometalate-based electron transfer modulation for efficient electrocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 3007–3015.
- 13 Zheng, H.; Wang, C.; Zhang, X.; Li, Y.; Ma, H.; Liu, Y. Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions. Appl. Catal. B: Environ. 2018, 234, 79–89.
- 14 Tao, P.; Hu, F.; Wang, J.; Niu, J. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications. Cood. Chem. Rev. 2019, 378, 281–309.
- 15 Xu, Y.; Yu, H.; Jiang, X.; Shi, J.; Li, B.; Li, L.; Wu, L.; Wang, M. Porous assembly of metallo-supramolecule and polyoxometalate via ionic complexation with vapor sorption properties. Chin. J. Chem. 2022, 40, 813–818.
- 16 Uchida, S. Fronties and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds. Chem. Sci. 2019, 10, 7670–7679.
- 17 Guo, Y.; Li, H.-Y.; Zhang, X.; Huang, J.; Feng, J.-K.; Diao, J.; Xie, B. Steering polyoxometalate transformation from ocatahedral to tetrahedral coordination by counter-cations. Dalton Trans. 2020, 49, 583–587.
- 18 Zou, C.; Zhang, Z.; Xu, X.; Gong, Q.; Li, J.; Wu, C.-D. A multifunctional organic-inorganic hybrid structure based Mn-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J. Am. Chem. Soc. 2012, 134, 87–90.
- 19 Zhang, Y.; Yu, W.-D.; Li, B.; Chen, Z.-F.; Yan, J. Discovery of a new family of polyoxometalate-based hybrids with improved catalytic performances for selective sulfoxidation: the synergy between classic heptamolybdate anions and complex cations. Inorg. Chem. 2019, 58, 14876–14884.
- 20 Lan, L.; Zhang, T.; Wang, H.; Hu, H.; Shi, Z.; Li, G. Synthesis and full characterization of one organometallic polyoxometalate-based copper(I)-alkene complex. Inorg. Chem. 2023, 62, 1377–1382.
- 21 Chang, S.; An, H.; Chen, Y.; Hou, Y.; Zhang, J.; Zhu, Q. Multiunit catalysts with synergistic reactivity: three-dimensional polyoxometalate- based coordination polymers for highly efficient synthesis of functionalized p-benzoquinones. ACS Appl. Mater. Interfaces 2019, 11, 37908–37919.
- 22 Wang, C.; Ying, J.; Mou, H.-C.; Tian, A.-X.; Wang, X.-L. Multi-functional photoelectric sensors based on a series of isopolymolybdate-based compounds for detecting different ions. Inorg. Chem. Front. 2020, 7, 3882–3894.
- 23 Chen, Y.; Chang, Z.; Zhang, Y.; Chen, K.; Wang, X. “Three”-like multidentate ligand-assisted synthesis of polymolybdate-based architectures with multinuclear metal clusters: supercapacitor and electrochemical sensing performances. Inorg. Chem. 2022, 61, 16020–16027.
- 24 Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X.-L. Cobalt complexes tuned by Anderson-type polyoxometalates and bis-amide derivative ligands featuring a ‘V’-like connector for efficient ampere sensing and the visible-light catalytic reduction of Cr(VI). Dalton Trans. 2022, 51, 7109–7117.
- 25 Wang, X.; Li, H.; Lin, J.; Wang, C.; Wang, X.-L. Capped Keggin type polyoxometalate-based inorganic-organic hybrids involving in suit ligand transformation as supercapacitors and efficient electrochemical sensors for detecting Cr(VI). Inorg. Chem. 2021, 60, 19287–19296.
- 26 Gao, H.; Kuang, Y.; Shi, X.; Wong, K. L.; Tan, B. B.; Kwan, J. M. C.; Liu, X.; Wu, J. Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nat. Commun. 2020, 11, 1956
- 27 Yang, G.; Li, K.; Lin, X.; Li, Y.; Cui, C.; Li, S.; Cheng, Y.; Liu, Y. Regio- and stereoselective synthesis of (Z)-3-ylidenephthalides via H3PMo12O40- catalyzed cyclization of 2-acylbenzoic acids with benzylic alcohols. Chin. J. Chem. 2021, 39, 3017–3022.
- 28 Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999.
- 29 Wang, J.; Jiang, Z.; Liu, W.; Wu, Z.; Miao, R.; Fu, F.; Yin, J.-F.; Chen, B.; Dong, Q.; Zhao, H.; Li, K.; Wang, G.; Liu, D.; Yin, P.; Li, Y.; Chen, M.; Wang, P. The marriage of sierpiński triangle and platonic polyhedral. Angew. Chem. Int. Ed. 2023, 62, e202214237.
- 30 Zhou, W.; Guan, Y.; Zheng, Y.; Chen, X.; Li, J.; Liu, X.; Peng, J. Three new difunctional electrocatalysts built from polyoxometalates and Cu−tpy units: experimental and theoretical study. Cryst. Growth Des. 2022, 22, 6588–6597.
- 31 Bruholder, E.; Wright, S.; Golub, V.; O’Connor, C. J.; Zubieta, J. Solid state coordination chemistry of oxomolybdenum organoarsonate materials. Inorg. Chem. 2003, 42, 7460–7471.
- 32 Armatas, N. G.; Allis, D. G.; Prosvirin, A.; Carnutu, G.; O’Connor, C. J.; Dumbar, K.; Zubieta, J. Molybdophosphonate clusters as building blocks in the oxomolybdate-organodiphosphonate/cobalt(II)-organoimine system: structural influences of secondary metal coordination preferences and diphosphonate tether lengths. Inorg. Chem. 2008, 47, 832–854.
- 33 Hampson, E.; Camerson, J. M.; Amin, S.; Kyo, J.; Watts, J. A.; Oshio, H.; Newton, G. N. Asymmetric hybrid polyoxometalates: a platform for multifunctional redox-active nanomaterials. Angew. Chem. Int. Ed. 2019, 58, 18281–18285.
- 34 Zhuang, X.; Wang, W.; Hao, J. Synthesis of organic-inorganic hybrid compounds and their selfassembled behavior in different solvents. J. Colloid Interface Sci. 2018, 519, 81–87.
- 35 Santoni, M. P.; Pal, A. K.; Hanan, G. S.; Proust, A.; Hasenknopf, B. Discrete covalent organic-inorganic hybrids: terpyridine functionalized polyoxometalates obtained by a modular strategy and their metal complexation. Inorg. Chem. 2011, 50, 6737–6745.
- 36 Kang, J.; Xu, B.; Peng, Z.; Zhu, X.; Wei, Y.; Powell, D. R. Molecular and polymeric hybrids based on covalently linked polyoxometalates and transition-metal complexes. Angew. Chem. Int. Ed. 2005, 44, 6902–6905.
- 37 Izzet, G.; Abećassis, B.; Brouri, D.; Piot, M.; Matt, B.; Serapian, S. A.; Bo, C.; Proust, A. Hierarchical self-assembly of polyoxometalate- based hybrids driven by metal coordination and electrostatic interactions: from discrete supramolecular species to dense monodisperse nanoparticles. J. Am. Chem. Soc. 2016, 138, 5093–5099.
- 38 Duffort, V.; Thouvenot, R.; Afonso, C.; Izzet, G.; Proust, A. Straightforward synthesis of new polyoxometalate-based hybrids exemplified by the covalent bonding of a polypyridyl ligand. Chem. Commun. 2009, 6062–6064.
- 39 Wu, H.; Zhi, M.; Chen, C.; Zhu, Y.; Ma, P.; Wang, J.; Niu, J. Synthesis, characterization, and photoluminesceence properties of three two-dimensional lanthanide-containing Dawson-type polyoxometalates. Dalton Trans. 2019, 48, 13850–13857.
- 40 Zhao, X. X.; Duan, Y. P.; Yang, F.; Wei, W.; Xu, Y. Q.; Hu, C. W. Efficient mechanochemical synthesis of polyoxometalate ⊂ ZIF complexes as reusable catalysts for highly selective oxidation. Inorg. Chem. 2017, 56, 14506–14512.
- 41
Yang, G.-C.; Pan, Q.-Y.; Yang, P.; Liu, Y.-S.; Du, Y.; Wang, K. Heteropolyacids supported on hierarchically macro/mesoporous TiO2: efficient catalyst for deep oxidative desulfurization of fuel. Tungsten 2022, 4, 28–37.
10.1007/s42864-021-00125-2 Google Scholar
- 42 Hou, Y. J.; An, H. Y.; Zhang, Y. M.; Hu, T.; Yang, W.; Chang, S. Z. Rapid destruction of two types of chemical warfare agent simulants by hybrid polyoxomolybdates modified by carboxylic acid ligands. ACS Catal. 2018, 8, 6062–6069.
- 43 Hou, Y.; Hill, C. L. Hydrolytically stable organic triester capped polyoxometalates with catalytic oxygenation activity of formula [RC(CH2O)3V3P2W15O59]6– (R = CH3, NO2, CH2OH). J. Am. Chem. Soc. 1993, 115, 11823–1183.
- 44 Fan, F.; Liu, D.; Zhao, L.; Li, H.; Bai, X.; Zhao, M.; Jiang, Z.; Su, P.; Zhong, W.; Li, Y.; Liao, W.; He, J.; Wang, P. Substituents make a difference: 6,6”-modified terpyridine complexes with helix configuration and enhanced emission. Dalton Trans. 2023, 52, 3033–6039.
- 45 Li, J.; Yan, H.; Wang, Z.; Liu, R.; Luo, B.; Yang, D.; Chen, H.; Pan, L.; Ma, Z. Copper chloride complexes with substituted 4’-phenyl-terpyridine ligands: synthesis, characterization, antiproliferative activities and DNA interactions. Dalton Trans. 2021, 50, 8243–8257.
- 46 Sheldrik, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.