Synthesis, Structure, and Optical-response Magnetic Property of a Heteroarene-azo Functionalized Mn19 Cluster
Yongkai Deng
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorYingying Wu
School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350 China
Search for more papers by this authorZhaoyang Li
School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350 China
Search for more papers by this authorZvonko Jagličić
Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
Search for more papers by this authorCorresponding Author
Rakesh Kumar Gupta
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]Search for more papers by this authorChenho Tung
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Di Sun
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYongkai Deng
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorYingying Wu
School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350 China
Search for more papers by this authorZhaoyang Li
School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350 China
Search for more papers by this authorZvonko Jagličić
Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
Search for more papers by this authorCorresponding Author
Rakesh Kumar Gupta
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]Search for more papers by this authorChenho Tung
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Di Sun
Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Metal clusters with photoswitching ligands can undergo magnetic changes under light radiation, which makes them potential optical-response magnetic-switching materials. Herein, a photoswitchable Mn-oxo cluster [MnII15MnIII4(L)18(OH)12(N3)6] (ClO4)2 (C6H5CN)8, (Mn19azo, HL=1-(hydroxymethyl)-3,5-dimethyl-4-(phenyldiazenyl)-pyrazole) has been designed and synthesized to realize the photoswitching behavior. Mn19azo shows quick trans-to-cis transformation upon 365 nm light irradiation in CH2Cl2 solution and solid state as confirmed by UV-Vis spectra. After the powder sample was irradiated for 80 min, the Curie constant of Mn19azo increases by about 7%. The change of magnetic properties can be considered as the result of the change of intermolecular interactions.
Supporting Information
Filename | Description |
---|---|
cjoc202300076-sup-0001-supinfo.pdfPDF document, 1.5 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Verdaguer, M. Molecular Electronics Emerges from Molecular Magnetism. Science 1996, 272, 698–699.
- 2 Mroziński, J. New Trends of Molecular Magnetism. Coord. Chem. Rev. 2005, 249, 2534–2548.
- 3 Sokol, J. J.; Hee, A. G.; Long, J. R. A Cyano-Bridged Single-Molecule Magnet: Slow Magnetic Relaxation in a Trigonal Prismatic MnMo6(CN)18 Cluster. J. Am. Chem. Soc. 2002, 124, 7656–7657.
- 4 Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. A Keplerate Magnetic Cluster Featuring an Icosidodecahedron of Ni(II) Ions Encapsulating a Dodecahedron of La(III) Ions. J. Am. Chem. Soc. 2007, 129, 7016–7017.
- 5 Zheng, X.-Y.; Xie, J.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. Recent Advances in the Assembly of High-Nuclearity Lanthanide Clusters. Coord. Chem. Rev. 2019, 378, 222–236.
- 6 Schelter, E. J.; Prosvirin, A. V.; Dunbar, K. R. Molecular Cube of ReII and MnII That Exhibits Single-Molecule Magnetism. J. Am. Chem. Soc. 2004, 126, 15004–15005.
- 7 Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2117–2121.
- 8 Moushi, E. E.; Stamatatos, T. C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. A Mn17 Octahedron with a Giant Ground-State Spin: Occurrence in Discrete Form and as Multidimensional Coordination Polymers. Inorg. Chem. 2009, 48, 5049–5051.
- 9 Skordi, K.; Anastassiades, A.; Fournet, A. D.; Kumar, R.; Schulze, M.; Wernsdorfer, W.; Christou, G.; Nastopoulos, V.; Perlepes, S. P.; Papatriantafyllopoulou, C.; Tasiopoulos, A. J. High Nuclearity Structurally – Related Mn Supertetrahedral T4 Aggregates. Chem. Commun. 2021, 57, 12484–12487.
- 10 Li, G.; Xie, H.; Yang, S.; Fu, Y.; Zhang, Y.; Wang, Y. Dramatic Impact of Auxiliary Ligands on the Dynamic Magnetic Relaxation in Tetranuclear DyIII2ZnII2 Single Molecule Magnets. Chin. J. Chem. 2022, 40, 2415–2420.
- 11 Liu, S.-J.; Han, S.-D.; Zhao, J.-P.; Xu, J.; Bu, X.-H. In-Situ Synthesis of Molecular Magnetorefrigerant Materials. Coord. Chem. Rev. 2019, 394, 39–52.
- 12 Zheng, Y.-Z.; Evangelisti, M.; Tuna, F.; Winpenny, R. E. P. Co–Ln Mixed-Metal Phosphonate Grids and Cages as Molecular Magnetic Refrigerants. J. Am. Chem. Soc. 2012, 134, 1057–1065.
- 13 Manoli, M.; Alexandrou, S.; Pham, L.; Lorusso, G.; Wernsdorfer, W.; Evangelisti, M.; Christou, G.; Tasiopoulos, A. J. Magnetic “Molecular Oligomers” Based on Decametallic Supertetrahedra: A Giant Mn49 Cuboctahedron and Its Mn25Na4 Fragment. Angew. Chem. Int. Ed. 2016, 55, 679–684.
- 14 Sessol, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Magnetic bistability in ametal-ion cluster. Nature 1993, 365, 141143.
- 15 Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry Strategies for High Performance Lanthanide-Based Single-Molecule Magnets. Chem. Soc. Rev. 2018, 47, 2431–2453.
- 16 Thiele, S.; Balestro, F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Electrically Driven Nuclear Spin Resonance in Single-Molecule Magnets. Science 2014, 344, 1135–1138.
- 17 Shao, D.; Xu, F.; Yin, L.; Li, H.; Sun, Y.; Ouyang, Z.; Wang, Z.; Zhang, Y.; Wang, X. Fine-Tuning of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(II) Complexes. Chin. J. Chem. 2022, 40, 2193–2202.
- 18 Manoli, M.; Inglis, R.; Manos, M. J.; Nastopoulos, V.; Wernsdorfer, W.; Brechin, E. K.; Tasiopoulos, A. J. A [Mn32] Double-Decker Wheel. Angew. Chem. Int. Ed. 2011, 50, 4441–4444.
- 19 Zhu, Z.; Li, X.-L.; Liu, S.; Tang, J. External Stimuli Modulate the Magnetic Relaxation of Lanthanide Single-Molecule Magnets. Inorg. Chem. Front. 2020, 7, 3315–3326.
- 20 Magott, M.; Reczyński, M.; Gaweł, B.; Sieklucka, B.; Pinkowicz, D. A Photomagnetic Sponge: High-Temperature Light-Induced Ferrimagnet Controlled by Water Sorption. J. Am. Chem. Soc. 2018, 140, 15876–15882.
- 21 Shiga, T.; Miyasaka, H.; Yamashita, M.; Morimoto, M.; Irie, M. Copper(ii)-Terbium(iii) Single-Molecule Magnets Linked by Photochromic Ligands. Dalton Trans. 2011, 40, 2275.
- 22 Inakuma, M.; Shinohara, H. Temperature-Dependent EPR Studies on Isolated Scandium Metallofullerenes: Sc@C82(I, II) and Sc@C84. J. Phys. Chem. B 2000, 104, 7595–7599.
- 23 Guo, X.; Zhu, G.; Li, Z.; Sun, F.; Yang, Z.; Qiu, S. A Lanthanide Metal–Organic Framework with High Thermal Stability and Available Lewis-Acid Metal Sites. Chem. Commun. 2006, 30, 3172–3174.
- 24 Mohapatra, S.; Rajeswaran, B.; Chakraborty, A.; Sundaresan, A.; Maji, T. K. Bimodal Magneto-Luminescent Dysprosium (DyIII)-Potassium (KI)-Oxalate Framework: Magnetic Switchability with High Anisotropic Barrier and Solvent Sensing. Chem. Mater. 2013, 25, 1673–1679.
- 25 Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.; Zheng, Y.-Z.; Ren, Y.-P.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S.; Zheng, Z. High-Nuclearity 3d–4f Clusters as Enhanced Magnetic Coolers and Molecular Magnets. J. Am. Chem. Soc. 2012, 134, 3314–3317.
- 26 Kong, X.-J.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. Keeping the Ball Rolling: Fullerene-like Molecular Clusters. Acc. Chem. Res. 2010, 43, 201–209.
- 27 Leng, J.; Dian, L.; Liu, J.; Tong, M. A Series of MnIII4MnII8 Single-Molecule Magnets Mediated by Intra- and Intermolecular Interactions. Eur. J. Inorg. Chem. 2011, 2011, 2317–2326.
- 28 Naitabdi, A.; Bucher, J.-P.; Gerbier, Ph.; Rabu, P.; Drillon, M. Self-Assembly and Magnetism of Mn12 Nanomagnets on Native and Functionalized Gold Surfaces. Adv. Mater. 2005, 17, 1612–1616.
- 29 Cornia, A.; Fabretti, A. C.; Pacchioni, M.; Zobbi, L.; Bonacchi, D.; Caneschi, A.; Gatteschi, D.; Biagi, R.; Del Pennino, U.; De Renzi, V.; Gurevich, L.; Van der Zant, H. S. J. Direct Observation of Single-Molecule Magnets Organized on Gold Surfaces. Angew. Chem. Int. Ed. 2003, 42, 1645–1648.
- 30 Liu, D.-P.; Lin, X.-P.; Zhang, H.; Zheng, X.-Y.; Zhuang, G.-L.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. Magnetic Properties of a Single-Molecule Lanthanide-Transition-Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms. Angew. Chem. Int. Ed. 2016, 55, 4532–4536.
- 31 Zheng, X.-Y.; Zhang, H.; Wang, Z.; Liu, P.; Du, M.-H.; Han, Y.-Z.; Wei, R.-J.; Ouyang, Z.-W.; Kong, X.-J.; Zhuang, G.-L.; Long, L.-S.; Zheng, L.-S. Insights into Magnetic Interactions in a Monodisperse Gd12Fe14 Metal Cluster. Angew. Chem. Int. Ed. 2017, 56, 11475–11479.
- 32 del Carmen Giménez-López, M.; Moro, F.; La Torre, A.; Gómez-García, C. J.; Brown, P. D.; van Slageren, J.; Khlobystov, A. N. Encapsulation of Single-Molecule Magnets in Carbon Nanotubes. Nat. Commun. 2011, 2, 407.
- 33
Chen, H.-J.; Zheng, X.-Y.; Zhao, Y.-R.; Yuan, D.-Q.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A Record-Breaking Loading Capacity for Single- Molecule Magnet Mn 12 Clusters Achieved in a Mesoporous Ln-MOF. ACS Appl. Electron. Mater. 2019, 1, 804–809.
10.1021/acsaelm.9b00088 Google Scholar
- 34 Aulakh, D.; Liu, L.; Varghese, J. R.; Xie, H.; Islamoglu, T.; Duell, K.; Kung, C.-W.; Hsiung, C.-E.; Zhang, Y.; Drout, R. J.; Farha, O. K.; Dunbar, K. R.; Han, Y.; Wriedt, M. Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2997–3005.
- 35 Crespi, S.; Simeth, N. A.; König, B. Heteroaryl Azo Dyes as Molecular Photoswitches. Nat. Rev. Chem. 2019, 3, 133–146.
- 36 Lerch, M. M.; Szymański, W.; Feringa, B. L. The (Photo)Chemistry of Stenhouse Photoswitches: Guiding Principles and System Design. Chem. Soc. Rev. 2018, 47, 1910–1937.
- 37 Tong, X.; Wang, G.; Soldera, A.; Zhao, Y. How Can Azobenzene Block Copolymer Vesicles Be Dissociated and Reformed by Light? J. Phys. Chem. B 2005, 109, 20281–20287.
- 38 Wang, Y.; Li, Q. Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals. Adv. Mater. 2012, 24, 1926–1945.
- 39 Xu, W.; Sun, S.; Wu, S. Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials. Angew. Chem. Int. Ed. 2019, 58, 9712–9740.
- 40 Klajn, R. Spiropyran-Based Dynamic Materials. Chem. Soc. Rev. 2014, 43, 148–184.
- 41 Deng, Y.-K.; Su, H.-F.; Xu, J.-H.; Wang, W.-G.; Kurmoo, M.; Lin, S.-C.; Tan, Y.-Z.; Jia, J.; Sun, D.; Zheng, L.-S. Hierarchical Assembly of a {MnII15MnIII4} Brucite Disc: Step-by-Step Formation and Ferrimagnetism. J. Am. Chem. Soc. 2016, 138, 1328–1334.
- 42 Moustafa, M. E.; McCready, M. S.; Puddephatt, R. J. Switching by Photochemical Trans–Cis Isomerization of Azobenzene Substituents in Organoplatinum Complexes. Organometallics 2012, 31, 6262–6269.
- 43 Deo, C.; Bogliotti, N.; Métivier, R.; Retailleau, P.; Xie, J. Photoswitchable Arene Ruthenium Complexes Containing O-Sulfonamide Azobenzene Ligands. Organometallics 2015, 34, 5775–5784.
- 44 Moustafa, M. E.; Boyle, P. D.; Puddephatt, R. J. Photoswitchable Organoplatinum Complexes with an Azobenzene Derivative of Di-2-Pyridylamine. New J. Chem. 2020, 44, 2882–2889.
- 45 Joshi, N. K.; Fuyuki, M.; Wada, A. Polarity Controlled Reaction Path and Kinetics of Thermal cis-to-trans Isomerization of 4-Aminoazobenzene. J. Phys. Chem. B 2014, 118, 1891−1899.
- 46 Peng, S.; Guo, Q.; Hartley, P. G.; Hughes, T. C. Azobenzene Moiety Variation Directing Self-assembly and Photoresponsive Behavior of Azo-surfactants. J. Mater. Chem. C 2014, 2, 8303−8312.
- 47 Angelini, G.; Canilho, N.; Emo, M.; Kingsley, M.; Gasbarri, C. Role of Solvent and Effect of Substituent on Azobenzene Isomerization by Using Room-Temperature Ionic Liquids as Reaction Media. J. Org. Chem. 2015, 80, 7430−7434.
- 48 Ashcroft, N. W.; Mermin, N. D. Solid State Physics, Saunders College Publishing, USA , 1976.
- 49 Stephen Blundell. Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics, Oxford University Press, Oxford, UK, 2014.
- 50 Su, S.-Q.; Wu, S.-Q.; Baker, M. L.; Bencok, P.; Azuma, N.; Miyazaki, Z.; Nakano, M.; Kang, S.; Shiota, Z.; Yoshizawa, K.; Kanegawa, S.; Sato, O. Quenching and Restoration of Orbital Angular Momentum through a Dynamic Bond in a Cobalt(II) Complex. J. Am. Chem. Soc. 2020, 142, 11434–11441.
- 51 Sallee, A.; Ghebreyessus, K. Photoresponsive Zn2+-Specific Metallohydrogels Coassembled from Imidazole Containing Phenylalanine and Arylazopyrazole Derivatives. Dalton Trans. 2020, 49 10441–10451.