Strategies toward Highly Efficient Monolithic Perovskite/Organic Tandem Solar Cells
Shan Jiang
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorZhiyang Xu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorFuzhi Wang
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorShilei Tian
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorYang Wang
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorCorresponding Author
Chenghao Li
Department of Coal and Syngas Conversion, Sinopec Research Institute of Petroleum Processing, Beijing, 100083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhan'ao Tan
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]Search for more papers by this authorShan Jiang
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorZhiyang Xu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorFuzhi Wang
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorShilei Tian
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorYang Wang
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206 China
Search for more papers by this authorCorresponding Author
Chenghao Li
Department of Coal and Syngas Conversion, Sinopec Research Institute of Petroleum Processing, Beijing, 100083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Zhan'ao Tan
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Constructing monolithic tandem solar cells (TSCs) is an effective method to break the Shockley–Queisser (S–Q) radiative efficiency limit for single-junction solar cells. Employing the wide bandgap perovskite materials and low bandgap organic materials as absorber layers for front and rear subcells, respectively, to construct perovskite/organic TSCs can complementarily absorb sunlight in ultraviolet-visible (UV-Vis) range by front perovskite and near-infrared (NIR) range by rear organic molecules, thus reducing the thermalization energy losses. Besides the subcells, the interconnection layer (ICL), which physically and electrically connects the front and rear subcells, is also an important tunnel junction to recombine charges. In this review, we summarize the optimization strategies of wide bandgap perovskites for front subcell, narrow bandgap organic material for rear subcell, and the ICLs employed in monolithic perovskite/organic TSCs.
References
- 1 Zhao, B.; Abdi-Jalebi, M.; Tabachnyk, M.; Glass, H.; Kamboj, V. S.; Nie, W.; Pearson, A. J.; Puttisong, Y.; Godel, K. C.; Beere, H. E.; Ritchie, D. A.; Mohite, A. D.; Dutton, S. E.; Friend, R. H.; Sadhanala, A. High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics. Adv. Mater. 2017, 29, 1604744.
- 2 Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Xiong, R. G.; Yan, Y. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. J. Am. Chem. Soc. 2016, 138, 12360–12363.
- 3 Li, C.; Song, Z.; Zhao, D.; Xiao, C.; Subedi, B.; Shrestha, N.; Junda, M. M.; Wang, C.; Jiang, C. S.; Al-Jassim, M.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Yan, Y. Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells. Adv. Energy Mater. 2018, 9, 1803135.
- 4 Ke, W.; Kanatzidis, M. G. Prospects for Low-toxicity Lead-free Perovskite Solar Cells. Nat. Commun. 2019, 10, 965.
- 5 Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G. Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 11445–11452.
- 6 Xu, X.; Chueh, C. C.; Jing, P.; Yang, Z.; Shi, X.; Zhao, T.; Lin, L. Y.; Jen, A. K. Y. High-Performance Near-IR Photodetector Using Low-Bandgap MA0.5FA0.5Pb0.5Sn0.5I3 Perovskite. Adv. Funct. Mater. 2017, 27, 1701053.
- 7 Xiao, L.; Chen, S.; Chen, X.; Peng, X.; Cao, Y.; Zhu, X. High-Detectivity Panchromatic Photodetectors for the Near Infrared Region based on a Dimeric Porphyrin Small Molecule. J. Mater. Chem. C 2018, 6, 3341–3345.
- 8 Vafaie, M.; Fan, J. Z.; Morteza Najarian, A.; Ouellette, O.; Sagar, L. K.; Bertens, K.; Sun, B.; García de Arquer, F. P.; Sargent, E. H. Colloidal Quantum Dot Photodetectors with 10-ns Response Time and 80% Quantum Efficiency at 1,550 nm. Matter 2021, 4, 1042–1053.
- 9 Wang, M.; Cao, F.; Meng, L.; Tian, W.; Li, L. High-Performance Flexible Self-Powered Photodetector Based on Perovskite and Low-Temperature Processed In2S3 Nanoflake Film. Adv. Mater. Interfaces 2019, 6, 1801526.
- 10 Pan, J.; Shang, Y.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H.; Mohammed, O. F.; Ning, Z.; Bakr, O. M. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. J. Am. Chem. Soc. 2018, 140, 562–565.
- 11 Lee, D.-K.; Shin, Y.; Jang, H. J.; Lee, J.-H.; Park, K.; Lee, W.; Yoo, S.; Lee, J. Y.; Kim, D.; Lee, J.-W.; Park, N.-G. Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Lett. 2021, 6, 1821–1830.
- 12 Vashishtha, P.; Ng, M.; Shivarudraiah, S. B.; Halpert, J. E. High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden- Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers. Chem. Mater. 2018, 31, 83–89.
- 13 Ng, Y. F.; Febriansyah, B.; Jamaludin, N. F.; Giovanni, D.; Yantara, N.; Chin, X. Y.; Tay, Y. B.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. Design of 2D Templating Molecules for Mixed-Dimensional Perovskite Light-Emitting Diodes. Chem. Mater. 2020, 32, 8097–8105.
- 14 Yang, W.; Park, B.; Jung, E.; Jeon, N.; Kim, Y.; Lee, D.; Shin, S.; Seo, J.; Kim, E.; Noh, J.; Seok, S. Iodide Management in for Mamidinium- Lead-Halide-based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376–1379.
- 15 Guo, Q.; Li, C.; Qiao, W.; Ma, S.; Wang, F.; Zhang, B.; Hu, L.; Dai, S.; Tan, Z. a. The Growth of a CH3NH3PbI3 Thin Film Using Simplified Close Space Sublimation for Efficient and Large Dimensional Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 1486–1494.
- 16 Snaith, H. J. Present Status and Future Prospects of Perovskite Photovoltaics. Nat. Mater. 2018, 17, 372–376.
- 17 Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Perovskite Precursor Solution Chemistry: From Fundamentals to Photovoltaic Applications. Chem. Soc. Rev. 2019, 48, 2011–2038.
- 18 Saliba, M.; Correa-Baena, J.-P.; Wolff, C. M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to Make over 20% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures. Chem. Mater. 2018, 30, 4193–4201.
- 19 Xiao, Z.; Jia, X.; Ding, L. Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency. Sci. Bull. 2017, 62, 1562–1564.
- 20 Li, Z.; Li, B.; Wu, X.; Sheppard, S.; Zhang, S.; Gao, D.; Long, N.; Zhu, Z. Organometallic-Functionalized Interfaces for Highly Efficient Inverted Perovskite Solar Cells. Science 2022, 376, 416–420.
- 21 Luo, X.; Shen, Z.; Shen, Y.; Su, Z.; Gao, X.; Wang, Y.; Han, Q.; Han, L. Effective Passivation with Self-Organized Molecules for Perovskite Photovoltaics. Adv. Mater. 2022, 34, 2202100.
- 22 Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; You, J. Inactive (PbI2)2RbCl Stabilizes Perovskite Films for Efficient Solar Cells. Science 2022, 377, 531–534.
- 23 Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R. A.; Dunfield, S. P.; Xiao, C.; Scheidt, R. A.; Kuciauskas, D.; Wang, X.; Hautzinger, M. P.; Tirawat, R.; Beard, M. C.; Fenning, D. P.; Berry, J. J.; Larson, B. W.; Yan, Y.; Zhu, K. Surface Reaction for Efficient and Stable Inverted Perovskite Solar Cells. Nature 2022, 611, 278–283.
- 24 Yun, H.-S.; Kwon, H. W.; Paik, M. J.; Hong, S.; Kim, J.; Noh, E.; Park, J.; Lee, Y.; Il Seok, S. Ethanol-based Green-Solution Processing of α-Formamidinium Lead Triiodide Perovskite Layers. Nat. Energy 2022, 7, 828–834.
- 25 Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M.; Li, A.; Zhu, J.; Sargent, E. H.; Tan, H. Monolithic All-Perovskite Tandem Solar Cells with 24.8% Efficiency Exploiting Comproportionation to Suppress Sn(ii) Oxidation in Precursor Ink. Nat. Energy 2019, 4, 864–873.
- 26 Yang, Z.; Yu, Z.; Wei, H.; Xiao, X.; Ni, Z.; Chen, B.; Deng, Y.; Habisreutinger, S. N.; Chen, X.; Wang, K.; Zhao, J.; Rudd, P. N.; Berry, J. J.; Beard, M. C.; Huang, J. Enhancing Electron Diffusion Length in Narrow-Bandgap Perovskites for Efficient Monolithic Perovskite Tandem Solar Cells. Nat. Commun. 2019, 10, 4498.
- 27 Wang, J.; Datta, K.; Li, J.; Verheijen, M. A.; Zhang, D.; Wienk, M. M.; Janssen, R. A. J. Understanding the Film Formation Kinetics of Sequential Deposited Narrow-Bandgap Pb-Sn Hybrid Perovskite Films. Adv. Energy Mater. 2020, 10, 2000566.
- 28 Jiang, S.; Bai, Y.; Ma, Z.; Jin, S.; Zou, C.; Tan, Z. a. Recent Advances of Monolithic All-Perovskite Tandem Solar Cells: From Materials to Devices. Chin. J. Chem. 2022, 40, 856–871.
- 29 Leijtens, T.; Bush, K. A.; Prasanna, R.; McGehee, M. D. Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors. Nat. Energy 2018, 3, 828–838.
- 30 Ávila, J.; Momblona, C.; Boix, P.; Sessolo, M.; Anaya, M.; Lozano, G.; Vandewal, K.; Míguez, H.; Bolink, H. J. High Voltage Vacuum-Deposited CH3NH3PbI3-CH3NH3PbI3 Tandem Solar Cells. Energy Environ. Sci. 2018, 11, 3292–3297.
- 31 Wang, C.; Song, Z.; Li, C.; Zhao, D.; Yan, Y. Low-Bandgap Mixed Tin-Lead Perovskites and Their Applications in All-Perovskite Tandem Solar Cells. Adv. Funct. Mater. 2019, 29, 1808801.
- 32 Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H. T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M. I.; Gao, Y.; Luo, X.; Wang, Y.; Gao, H.; Zhang, C.; Xu, J.; Zhu, J.; Sargent, E. H.; Tan, H. All-Perovskite Tandem Solar Cells with 24.2% Certified Efficiency and Area over 1cm2 Using Surface-Anchoring Zwitterionic Antioxidant. Nat. Energy 2020, 5, 870–880.
- 33 Yu, Z.; Yang, Z.; Ni, Z.; Shao, Y.; Chen, B.; Lin, Y.; Wei, H.; Yu, Z. J.; Holman, Z.; Huang, J. Simplified Interconnection Structure based on C60/SnO2-x for All-Perovskite Tandem Solar Cells. Nat. Energy 2020, 5, 657–665.
- 34 Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C. R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K.; Zhao, X.; Xiong, R.-G.; Yan, Y. Low-Bandgap Mixed Tin-Lead Iodide Perovskite Absorbers with Long Carrier Lifetimes for All-Perovskite Tandem Solar Cells. Nat. Energy 2017, 2, 17018.
- 35 Zhao, D.; Chen, C.; Wang, C.; Junda, M. M.; Song, Z.; Grice, C. R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N. J.; Zhao, X.; Fang, G.; Xiong, R.-G.; Zhu, K.; Yan, Y. Efficient Two-Terminal All-Perovskite Tandem Solar Cells Enabled by High-Quality Low-Bandgap Absorber Layers. Nat. Energy 2018, 3, 1093–1100.
- 36 Chen, B.; Zheng, X.; Bai, Y.; Padture, N. P.; Huang, J. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites. Adv. Energy Mater. 2017, 7, 1602400.
- 37 Luo, X.; Wu, T.; Wang, Y.; Lin, X.; Su, H.; Han, Q.; Han, L. Progress of All-Perovskite Tandem Solar Cells: The Role of Narrow-Bandgap Absorbers. Sci. China Chem. 2020, 64, 218–227.
- 38 Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6. Adv. Mater. 2021, 33, 2101733.
- 39 Xiong, X.; Xue, X.; Zhang, M.; Hao, T.; Han, Z.; Sun, Y.; Zhang, Y.; Liu, F.; Pei, S.; Zhu, L. Melamine-Doped Cathode Interlayer Enables High-Efficiency Organic Solar Cells. ACS Energy Lett. 2021, 6, 3582–3589.
- 40 Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205.
- 41 Yin, Z.; Mei, S.; Gu, P.; Wang, H. Q.; Song, W. Efficient Organic Solar Cells with Superior Stability based on PM6:BTP-eC9 Blend and AZO/Al Cathode. iScience 2021, 24, 103027.
- 42 Zeng, Q.; Liu, L.; Xiao, Z.; Liu, F.; Hua, Y.; Yuan, Y.; Ding, L. A Two-Terminal All-Inorganic Perovskite/Organic Tandem Solar Cell. Sci. Bull. 2019, 64, 885–887.
- 43 Brinkmann, K. O.; Becker, T.; Zimmermann, F.; Kreusel, C.; Gahlmann, T.; Theisen, M.; Haeger, T.; Olthof, S.; Tuckmantel, C.; Gunster, M.; Maschwitz, T.; Gobelsmann, F.; Koch, C.; Hertel, D.; Caprioglio, P.; Pena-Camargo, F.; Perdigon-Toro, L.; Al-Ashouri, A.; Merten, L.; Hinderhofer, A.; Gomell, L.; Zhang, S.; Schreiber, F.; Albrecht, S.; Meerholz, K.; Neher, D.; Stolterfoht, M.; Riedl, T. Perovskite-Organic Tandem Solar Cells with Indium Oxide Interconnect. Nature 2022, 604, 280–286.
- 44 Ma, J.; Li, Y.; Li, J.; Qin, M.; Wu, X.; Lv, Z.; Hsu, Y.-J.; Lu, X.; Wu, Y.; Fang, G. Constructing Highly Efficient All-Inorganic Perovskite Solar Cells with Efficiency Exceeding 17% by Using Dopant-Free Polymeric Eelectron-Donor Materials. Nano Energy 2020, 75, 104933.
- 45 Huang, Q.; Liu, Y.; Li, F.; Liu, M.; Zhou, Y. Advances in Cesium Lead Iodide Perovskite Solar Cells: Processing Science Matters. Mater. Today 2021, 47, 156–169.
- 46 He, J.; Su, J.; Lin, Z.; Ma, J.; Zhou, L.; Zhang, S.; Liu, S.; Chang, J.; Hao, Y. Enhanced Efficiency and Stability of All-Inorganic CsPbI2Br Perovskite Solar Cells by Organic and Ionic Mixed Passivation. Adv. Sci. 2021, 8, 2101367.
- 47 Lin, H. Y.; Chen, C. Y.; Hsu, B. W.; Cheng, Y. L.; Tsai, W. L.; Huang, Y. C.; Tsao, C. S.; Lin, H. W. Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand-Layer Rapid Deposition. Adv. Funct. Mater. 2019, 29, 1905163.
- 48 Singh, R.; Parashar, M.; Sandhu, S.; Yoo, K.; Lee, J.-J. The Effects of Crystal Structure on the Photovoltaic Performance of Perovskite Solar Cells Under Ambient Indoor Illumination. Solar Energy 2021, 220, 43–50.
- 49 Guo, Z.; Jena, A. K.; Takei, I.; Kim, G. M.; Kamarudin, M. A.; Sanehira, Y.; Ishii, A.; Numata, Y.; Hayase, S.; Miyasaka, T. VOC Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI2Br Perovskite Solar Cells. J. Am. Chem. Soc. 2020, 142, 9725–9734.
- 50 Luo, Y. X.; Xie, F. M.; Chen, J. D.; Ren, H.; Wang, J. K.; Cai, X. Y.; Shen, K. C.; Lu, L. Y.; Li, Y. Q.; Luponosov, Y. N.; Tang, J. X. Uniform Stepped Interfacial Energy Level Structure Boosts Efficiency and Stability of CsPbI2Br Solar Cells. Adv. Funct. Mater. 2021, 31, 2103316.
- 51 Yuan, S.; Xian, Y.; Long, Y.; Cabot, A.; Li, W.; Fan, J. Chromium-Based Metal-Organic Framework as A-Site Cation in CsPbI2Br Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2106233.
- 52 Guo, Z.; Jena, A. K.; Takei, I.; Ikegami, M.; Ishii, A.; Numata, Y.; Shibayama, N.; Miyasaka, T. Dopant-Free Polymer HTM-Based CsPbI2Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Adv. Funct. Mater. 2021, 31, 2103614.
- 53 Zhao, H.; Han, Y.; Xu, Z.; Duan, C.; Yang, S.; Yuan, S.; Yang, Z.; Liu, Z.; Liu, S. A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V. Adv. Energy Mater. 2019, 9, 1902279.
- 54 Zhang, Y.; Wu, C.; Wang, D.; Zhang, Z.; Qi, X.; Zhu, N.; Liu, G.; Li, X.; Hu, H.; Chen, Z.; Xiao, L.; Qu, B. High Efficiency (16.37%) of Cesium Bromide-Passivated All-Inorganic CsPbI2Br Perovskite Solar Cells. Solar RRL 2019, 3, 1900254.
- 55 Kim, K. S.; Jin, I. S.; Park, S. H.; Lim, S. J.; Jung, J. W. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI2Br Films for Efficient and Stable All-Inorganic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 36228–36236.
- 56 Yu, Y.; Wang, C.; Grice, C. R.; Shrestha, N.; Zhao, D.; Liao, W.; Guan, L.; Awni, R. A.; Meng, W.; Cimaroli, A. J.; Zhu, K.; Ellingson, R. J.; Yan, Y. Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1177–1182.
- 57 Lin, Y.; Chen, B.; Zhao, F.; Zheng, X.; Deng, Y.; Shao, Y.; Fang, Y.; Bai, Y.; Wang, C.; Huang, J. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells. Adv. Mater. 2017, 29, 1700607.
- 58 Mateen, M.; Arain, Z.; Liu, X.; Liu, C.; Yang, Y.; Ding, Y.; Ma, S.; Ren, Y.; Wu, Y.; Tao, Y.; Shi, P.; Dai, S. High-Performance Mixed-Cation Mixed-Halide Perovskite Solar Cells Enabled by a Facile Intermediate Engineering Technique. J. Power Sources 2020, 448, 227386.
- 59 McMeekin, D.; Sadoughi, G.; Rehman, W.; Eperon, G.; Saliba, M.; Hörantner, M.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M.; Herz, L.; Snaith, H. A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells. Science 2016, 351, 151–155.
- 60 Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; Lilliu, S.; Savenije, T. J.; Rensmo, H.; Divitini, G.; Ducati, C.; Friend, R. H.; Stranks, S. D. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation. Nature 2018, 555, 497–501.
- 61 Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L. Perovskite Solar Cells with 18.21% Efficiency and Area over 1cm2 Fabricated by Heterojunction Engineering. Nat. Energy 2016, 1, 16148.
- 62 Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.; Ummadisingu, A.; Zakeeruddin, S.; Correa-Baena, J.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206–209.
- 63 Sharma, R.; Lee, H.; Seifrid, M.; Gupta, V.; Bazan, G. C.; Yoo, S. Performance Enhancement of Conjugated Polymer-Small Molecule-Non Fullerene Ternary Organic Solar Cells by Tuning Recombination Kinetics and Molecular Ordering. Solar Energy 2020, 201, 499–507.
- 64 Liu, Z.; Wang, N. Ternary Organic Solar Cells with NC70BA as a Third Component Material Exhibit High Open-Circuit Voltage and Small Energy Losses. J. Power Sources 2020, 448, 227442.
- 65 Li, H.; He, D.; Mao, P.; Wei, Y.; Ding, L.; Wang, J. Additive-Free Organic Solar Cells with Power Conversion Efficiency over 10%. Adv. Energy Mater. 2017, 7, 1602663.
- 66 Yang, D.; Yu, K.; Xu, J.; Zhang, J.; Zhang, J.; Gao, J.; Song, W.; Li, D.; Chen, Z.; Ge, Z. Achieving 10% Efficiency in Non-Fullerene All-Small- Molecule Organic Solar Cells without Extra Treatments. J. Mater. Chem. A 2021, 9, 10427–10436.
- 67 Seo, K. W.; Lee, J.; Jo, J.; Cho, C.; Lee, J. Y. Highly Efficient (>10%) Flexible Organic Solar Cells on PEDOT-Free and ITO-Free Transparent Electrodes. Adv. Mater. 2019, 31, 1902447.
- 68 Goh, T.; Huang, J.-S.; Yager, K. G.; Sfeir, M. Y.; Nam, C.-Y.; Tong, X.; Guard, L. M.; Melvin, P. R.; Antonio, F.; Bartolome, B. G.; Lee, M. L.; Hazari, N.; Taylor, A. D. Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Adv. Energy Mater. 2016, 6, 1600660.
- 69 Qiu, B.; Xue, L.; Yang, Y.; Bin, H.; Zhang, Y.; Zhang, C.; Xiao, M.; Park, K.; Morrison, W.; Zhang, Z.-G.; Li, Y. All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chem. Mater. 2017, 29, 7543–7553.
- 70 Xie, X.; Sun, D.; Wei, Y.; Yuan, Y.; Zhang, J.; Ren, Y.; Wang, P. Thienochrysenocarbazole based Organic Dyes for Transparent Solar Cells with Over 10% Efficiency. J. Mater. Chem. A 2019, 7, 11338–11346.
- 71 Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, 2204718.
- 72 Gao, W.; Qi, F.; Peng, Z.; Lin, F. R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z.; Lee, C. S.; Marks, T. J.; Ade, H.; Jen, A. K. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor. Adv. Mater. 2022, 34, 2202089.
- 73 Gao, J.; Yu, N.; Chen, Z.; Wei, Y.; Li, C.; Liu, T.; Gu, X.; Zhang, J.; Wei, Z.; Tang, Z.; Hao, X.; Zhang, F.; Zhang, X.; Huang, H. Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy. Adv. Sci. 2022, 9, 2203606.
- 74 Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination. Adv. Mater. 2022, 34, 2109516.
- 75 Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Chen, Y.; Fang, J.; Ma, C. Q.; Zhou, G.; Zhu, H.; Zuo, L.; Qiu, H.; Yin, S.; Chen, H. Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics. Adv. Energy Mater. 2022, 12, 2201076.
- 76 Liu, W.; Xu, X.; Yuan, J.; Leclerc, M.; Zou, Y.; Li, Y. Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells. ACS Energy Lett. 2021, 6, 598–608.
- 77 Wang, D.; Zhou, G.; Li, Y.; Yan, K.; Zhan, L.; Zhu, H.; Lu, X.; Chen, H.; Li, C. Z. High-Performance Organic Solar Cells from Non-Halogenated Solvents. Adv. Funct. Mater. 2021, 32, 2107827.
- 78 Zhang, X.; Li, C.; Qin, L.; Chen, H.; Yu, J.; Wei, Y.; Liu, X.; Zhang, J.; Wei, Z.; Gao, F.; Peng, Q.; Huang, H. Side-Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fused-Ring Electron Acceptors. Angew. Chem. Int. Ed. 2021, 60, 17720–17725.
- 79 Li, C.; Zhang, X.; Yu, N.; Gu, X.; Qin, L.; Wei, Y.; Liu, X.; Zhang, J.; Wei, Z.; Tang, Z.; Shi, Q.; Huang, H. Simple Nonfused-Ring Electron Acceptors with Noncovalently Conformational Locks for Low-Cost and High-Performance Organic Solar Cells Enabled by End-Group Engineering. Adv. Funct. Mater. 2021, 32, 2108861.
- 80 McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C. Solvent Additives: Key Morphology-Directing Agents for Solution-Processed Organic Solar Cells. Adv. Mater. 2018, 30, 1707114.
- 81 Yang, W.; Luo, Z.; Sun, R.; Guo, J.; Wang, T.; Wu, Y.; Wang, W.; Guo, J.; Wu, Q.; Shi, M.; Li, H.; Yang, C.; Min, J. Simultaneous Enhanced Efficiency and Thermal Stability in Organic Solar Cells from a Polymer Acceptor Additive. Nat. Commun. 2020, 11, 1218.
- 82 Zhang, X.; Qin, L.; Yu, J.; Li, Y.; Wei, Y.; Liu, X.; Lu, X.; Gao, F.; Huang, H. High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering. Angew. Chem. Int. Ed. 2021, 60, 12475–12481.
- 83 Wang, P.; Li, W.; Sandberg, O. J.; Guo, C.; Sun, R.; Wang, H.; Li, D.; Zhang, H.; Cheng, S.; Liu, D.; Min, J.; Armin, A.; Wang, T. Tuning of the Interconnecting Layer for Monolithic Perovskite/Organic Tandem Solar Cells with Record Efficiency Exceeding 21. Nano Lett. 2021, 21, 7845–7854.
- 84 Qin, S.; Lu, C.; Jia, Z.; Wang, Y.; Li, S.; Lai, W.; Shi, P.; Wang, R.; Zhu, C.; Du, J.; Zhang, J.; Meng, L.; Li, Y. Constructing Monolithic Perovskite/ Organic Tandem Solar Cell with Efficiency of 22.0% via Reduced Open-Circuit Voltage Loss and Broadened Absorption Spectra. Adv. Mater. 2022, 34, 2108829.
- 85 Chen, W.; Li, D.; Chen, X.; Chen, H.; Liu, S.; Yang, H.; Li, X.; Shen, Y.; Ou, X.; Yang, Y.; Jiang, L.; Li, Y.; Li, Y. Surface Reconstruction for Stable Monolithic All-Inorganic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Adv. Func. Mater. 2021, 32, 2109321.
- 86 Wei, M.; Xiao, K.; Walters, G.; Lin, R.; Zhao, Y.; Saidaminov, M. I.; Todorovic, P.; Johnston, A.; Huang, Z.; Chen, H.; Li, A.; Zhu, J.; Yang, Z.; Wang, Y. K.; Proppe, A. H.; Kelley, S. O.; Hou, Y.; Voznyy, O.; Tan, H.; Sargent, E. H. Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Adv. Mater. 2020, 32, 1907058.
- 87 Tong, J.; Song, Z.; Kim, D.; Chen, X.; Chen, C.; Palmstrom, A.; Ndione, P.; Reese, M.; Dunfield, S.; Reid, O.; Liu, J.; Zhang, F.; Harvey, S.; Li, Z.; Christensen, S.; Teeter, G.; Zhao, D.; Al-Jassim, M.; van Hest, M.; Beard, M.; Shaheen, S.; Berry, J.; Yan, Y.; Zhu, K. Carrier Lifetimes of >1 μs in Sn-Pb Perovskites Enable Efficient All-Perovskite Tandem Solar Cells. Science 2019, 364, 475–479.
- 88 Palmstrom, A. F.; Eperon, G. E.; Leijtens, T.; Prasanna, R.; Habisreutinger, S. N.; Nemeth, W.; Gaulding, E. A.; Dunfield, S. P.; Reese, M.; Nanayakkara, S.; Moot, T.; Werner, J.; Liu, J.; To, B.; Christensen, S. T.; McGehee, M. D.; van Hest, M. F. A. M.; Luther, J. M.; Berry, J. J.; Moore, D. T. Enabling Flexible All-Perovskite Tandem Solar Cells. Joule 2019, 3, 2193–2204.
- 89 Jiang, S.; Chen, X.; Bai, Y.; Yao, J.; Wakeel, M.; Alhodaly, M. S.; Hayat, T.; Tan, Z. Water-Soluble SnO2 Nanoparticles as the Electron Collection Layer for Efficient and Stable Inverted Organic Tandem Solar Cells. ACS Appl. Energy Mater. 2020, 3, 12662–12671.
- 90 Li, C.; Wang, Z. S.; Zhu, H. L.; Zhang, D.; Cheng, J.; Lin, H.; Ouyang, D.; Choy, W. C. H. Thermionic Emission-Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution-Processed Perovskites. Adv. Energy Mater. 2018, 8, 1801954.
- 91 Li, C.; Wang, Y.; Choy, W. C. H. Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods 2020, 4, 200093.
- 92 Ahn, Y. J.; Ji, S. G.; Kim, J. Y. Monolithic all-perovskite tandem solar cells: recent progress and challenges. J. Korean Ceram. Soc. 2021, 58, 399–413.
- 93 Forgács, D.; Gil-Escrig, L.; Pérez-Del-Rey, D.; Momblona, C.; Werner, J.; Niesen, B.; Ballif, C.; Sessolo, M.; Bolink, H. J. Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602121.
- 94 Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z.a. Tandem Structure: A Breakthrough in Power Conversion Efficiency for Highly Efficient Polymer Solar Cells. Sustain. Energ. Fuels 2019, 3, 910–934.
- 95 Gu, X.; Lai, X.; Zhang, Y.; Wang, T.; Tan, W. L.; McNeill, C. R.; Liu, Q.; Sonar, P.; He, F.; Li, W.; Shan, C.; Kyaw, A. K. K. Organic Solar Cell With Efficiency Over 20% and VOC Exceeding 2.1 V Enabled by Tandem With All-Inorganic Perovskite and Thermal Annealing-Free Process. Adv. Sci. 2022, 9, 2200445.
- 96 Zhou, D.; Huang, J.; Liu, J.; Yan, H.; Zhang, J.; Zhang, M.; Liang, G.; Lu, L.; Zhang, X.; Xu, P.; Kwok, H.-S.; Li, G. Dual Passivation Strategy for High Efficiency Inorganic CsPbI2Br Solar Cells. Solar RRL 2021, 5, 2100112.
- 97 Yang, S.; Wen, J.; Liu, Z.; Che, Y.; Xu, J.; Wang, J.; Xu, D.; Yuan, N.; Ding, J.; Duan, Y.; Liu, S. A Key 2D Intermediate Phase for Stable High-Efficiency CsPbI2Br Perovskite Solar Cells. Adv. Energy Mater. 2021, 12, 2103019.
- 98 Mali, S. S.; Patil, J. V.; Hong, C. K. Hot-Air-Assisted Fully Air-Processed Barium Incorporated CsPbI2Br Perovskite Thin Films for Highly Efficient and Stable All-Inorganic Perovskite Solar Cells. Nano Lett. 2019, 19, 6213–6220.
- 99 Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Solvent-Controlled Growth of Inorganic Perovskite Films in Dry Environment for Efficient and Stable Solar Cells. Nat. Commun. 2018, 9, 2225.
- 100 Liu, L.; Xiao, Z.; Zuo, C.; Ding, L. Inorganic Perovskite/Organic Tandem Solar Cells with Efficiency Over 20%. J. Semicond. 2021, 42, 020501.
- 101 Li, X.; Chen, W.; Wang, S.; Xu, G.; Liu, S.; Li, Y.; Li, Y. One-Source Strategy Boosting Dopant-Free Hole Transporting Layers for Highly Efficient and Stable CsPbI2Br Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2010696.
- 102 Mali, S. S.; Patil, J. V.; Shinde, P. S.; de Miguel, G.; Hong, C. K. Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells. Matter 2021, 4, 635–653.
- 103 Yin, G.; Zhao, H.; Jiang, H.; Yuan, S.; Niu, T.; Zhao, K.; Liu, Z.; Liu, S. F. Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency. Adv. Funct. Mater. 2018, 28, 1803269.
- 104 Chang, C.-Y.; Tsai, B.-C.; Hsiao, Y.-C.; Lin, M.-Z.; Meng, H.-F. Solution-Processed Conductive Interconnecting Layer for Highly-Efficient and Long-Term Stable Monolithic Perovskite Tandem Solar Cells. Nano Energy 2019, 55, 354–367.
- 105 Xu, Q.; Zhao, Y.; Zhang, X. Light Management in Monolithic Perovskite/Silicon Tandem Solar Cells. Solar RRL 2020, 4, 1900206.
- 106 Wu, X.; Liu, Y.; Qi, F.; Lin, F.; Fu, H.; Jiang, K.; Wu, S.; Bi, L.; Wang, D.; Xu, F.; Jen, A. K. Y.; Zhu, Z. Improved Stability and Efficiency of Perovskite/Organic Tandem Solar Cells with an All-Inorganic Perovskite Layer. J. Mater. Chem. A 2021, 9, 19778–19787.
- 107 Tian, J.; Xue, Q.; Tang, X.; Chen, Y.; Li, N.; Hu, Z.; Shi, T.; Wang, X.; Huang, F.; Brabec, C. J.; Yip, H. L.; Cao, Y. Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability. Adv. Mater. 2019, 31, 1901152.
- 108 Cho, K.; Grancini, G.; Lee, Y.; Oveisi, E.; Ryu, J.; Almora, O.; Tschumi, M.; Schouwink, P.; Seo, G.; Heo, S.; Park, J.; Jang, J.; Paek, S.; Garcia-Belmonte, G.; Nazeeruddin, M. Selective Growth of Layered Perovskite for Stable and Efficient Photovoltaics. Energy Environ. Sci. 2018, 11, 952–959.
- 109 Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; Angelis, F.; Huang, J. Stabilizing Halide Perovskite Surfaces for Solar Cell Operation with Wide-Bandgap Lead Oxysalts. Science 2019, 365, 473–478.
- 110 Wang, M.; Cao, F.; Deng, K.; Li, L. Adduct Phases Induced Controlled Crystallization for Mixed-Cation Perovskite Solar Cells with Efficiency Over 21%. Nano Energy 2019, 63, 103867.
- 111 Xie, Y. M.; Yao, Q.; Zeng, Z.; Xue, Q.; Niu, T.; Xia, R.; Cheng, Y.; Lin, F.; Tsang, S. W.; Jen, A. K. Y.; Yip, H. L.; Cao, Y. Homogeneous Grain Boundary Passivation in Wide-Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Adv. Funct. Mater. 2022, 32, 2112126.
- 112 Chen, X.; Jia, Z.; Chen, Z.; Jiang, T.; Bai, L.; Tao, F.; Chen, J.; Chen, X.; Liu, T.; Xu, X.; Yang, C.; Shen, W.; Sha, W. E. I.; Zhu, H.; Yang, Y. Efficient and Reproducible Monolithic Perovskite/Organic Tandem Solar Cells with Low-Loss Interconnecting Layers. Joule 2020, 4, 1594–1606.
- 113 Di Girolamo, D.; Di Giacomo, F.; Matteocci, F.; Marrani, A. G.; Dini, D.; Abate, A. Progress, Highlights and Perspectives on NiO in Perovskite Photovoltaics. Chem. Sci. 2020, 11, 7746–7759.
- 114 Chen, W.; Zhu, Y.; Xiu, J.; Chen, G.; Liang, H.; Liu, S.; Xue, H.; Birgersson, E.; Ho, J. W.; Qin, X.; Lin, J.; Ma, R.; Liu, T.; He, Y.; Ng, A. M.-C.; Guo, X.; He, Z.; Yan, H.; Djurišić, A. B.; Hou, Y. Monolithic Perovskite/Organic Tandem Solar Cells with 23.6% Efficiency Enabled by Reduced Voltage Losses and Optimized Interconnecting Layer. Nat. Energy 2022, 7, 229–237.
- 115 Lang, K.; Guo, Q.; He, Z.; Bai, Y.; Yao, J.; Wakeel, M.; Alhodaly, M. S.; Hayat, T.; Tan, Z. High Performance Tandem Solar Cells with Inorganic Perovskite and Organic Conjugated Molecules to Realize Complementary Absorption. J. Phys. Chem. Lett. 2020, 11, 9596–9604.
- 116 Xie, S.; Xia, R.; Chen, Z.; Tian, J.; Yan, L.; Ren, M.; Li, Z.; Zhang, G.; Xue, Q.; Yip, H.-L.; Cao, Y. Efficient Monolithic Perovskite/Organic Tandem Solar Cells and Their Efficiency Potential. Nano Energy 2020, 78, 105238.
- 117 Lin, F.; Jiang, K.; Kaminsky, W.; Zhu, Z.; Jen, A. K. A Non-fullerene Acceptor with Enhanced Intermolecular pi-Core Interaction for High-Performance Organic Solar Cells. J. Am. Chem. Soc. 2020, 142, 15246–15251.
- 118ska, G.; Arlauskas, K.; Viliunas, M. Extraction Current Transients: New Method of Study of Charge Transport in Microcrystalline Silicon. Phys. Rev. Lett. 2000, 84, 4946.
- 119 Jiang, K.; Zhang, J.; Peng, Z.; Lin, F.; Wu, S.; Li, Z.; Chen, Y.; Yan, H.; Ade, H.; Zhu, Z.; Jen, A. K. Pseudo-Bilayer Architecture Enables High- Performance Organic Solar Cells with Enhanced Exciton Diffusion Length. Nat. Commun. 2021, 12, 468.
- 120 Huang, H.; Yang, L.; Sharma, B. Recent Advances in Organic Ternary Solar Cells. J. Mater. Chem. A 2017, 5, 11501–11517.
- 121 Xie, Y.; Huo, L.; Fan, B.; Fu, H.; Cai, Y.; Zhang, L.; Li, Z.; Wang, Y.; Ma, W.; Chen, Y.; Sun, Y. High-Performance Semitransparent Ternary Organic Solar Cells. Adv. Funct. Mater. 2018, 28, 1800627.
- 122 Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The Role of the Third Component in Ternary Organic Solar Cells. Nat. Rev. Mater. 2019, 4, 229–242.
- 123 Xie, Y.; Yang, F.; Li, Y.; Uddin, M. A.; Bi, P.; Fan, B.; Cai, Y.; Hao, X.; Woo, H. Y.; Li, W.; Liu, F.; Sun, Y. Morphology Control Enables Efficient Ternary Organic Solar Cells. Adv. Mater. 2018, 30, 1803045.
- 124 Wang, Z.; Zhang, Y.; Zhang, J.; Wei, Z.; Ma, W. Optimized “Alloy-Parallel” Morphology of Ternary Organic Solar Cells. Adv. Energy Mater. 2016, 6, 1502456.
- 125 Gasparini, N.; Paleti, S. H. K.; Bertrandie, J.; Cai, G.; Zhang, G.; Wadsworth, A.; Lu, X.; Yip, H.-L.; McCulloch, I.; Baran, D. Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS Energy Lett. 2020, 5, 1371–1379.
- 126 Rajagopal, A.; Yang, Z.; Jo, S. B.; Braly, I. L.; Liang, P. W.; Hillhouse, H. W.; Jen, A. K. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. Adv. Mater. 2017, 29, 1702140.
- 127 Zheng, X.; Alsalloum, A. Y.; Hou, Y.; Sargent, E. H.; Bakr, O. M. All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Acc. Mater. Res. 2020, 1, 63–76.
- 128 Mao, J.; Lin, H.; Ye, F.; Qin, M.; Burkhartsmeyer, J. M.; Zhang, H.; Lu, X.; Wong, K. S.; Choy, W. C. H. All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano 2018, 12, 10486–10492.
- 129 Jiang, S.; Bai, Y.; Xu, Z.; Wang, F.; Xia, L.; Yang, Y.; Li, C.; Tan, Z. Efficient Perovskite Indoor Photovoltaics with Open-Circuit Voltage of 1.15 V via Collaborative Optimization of CsPbI2Br Layer and Hole Transport Layer. Small Methods 2022, 6, 2200624.
- 130 Avila, J. R.; Emery, J. D.; Pellin, M. J.; Martinson, A. B.; Farha, O. K.; Hupp, J. T. Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth. ACS Appl. Mater. Interfaces 2016, 8, 19853–19859.
- 131 Kennedy, C. L.; Hill, A. H.; Massaro, E. S.; Grumstrup, E. M. Ultrafast Excited-State Transport and Decay Dynamics in Cesium Lead Mixed Halide Perovskites. ACS Energy Lett. 2017, 2, 1501–1506.
- 132 Zhao, X.; Yao, C.; Liu, T.; Hamill, J. C., Jr.; Ngongang Ndjawa, G. O.; Cheng, G.; Yao, N.; Meng, H.; Loo, Y. L. Extending the Photovoltaic Response of Perovskite Solar Cells into the Near-Infrared with a Narrow-Bandgap Organic Semiconductor. Adv. Mater. 2019, 31, 1904494.
- 133 Xue, Y.; Yang, F.; Yuan, J.; Zhang, Y.; Gu, M.; Xu, Y.; Ling, X.; Wang, Y.; Li, F.; Zhai, T.; Li, J.; Cui, C.; Chen, Y.; Ma, W. Toward Scalable PbS Quantum Dot Solar Cells Using a Tailored Polymeric Hole Conductor. ACS Energy Lett. 2019, 4, 2850–2858.
- 134 Aqoma, H.; Imran, I. F.; Wibowo, F. T. A.; Krishna, N. V.; Lee, W.; Sarker, A. K.; Ryu, D. Y.; Jang, S. Y. High-Efficiency Solution-Processed Two-Terminal Hybrid Tandem Solar Cells Using Spectrally Matched Inorganic and Organic Photoactive Materials. Adv. Energy Mater. 2020, 10, 2001188.
- 135 Li, C.; Song, Z.; Chen, C.; Xiao, C.; Subedi, B.; Harvey, S. P.; Shrestha, N.; Subedi, K. K.; Chen, L.; Liu, D.; Li, Y.; Kim, Y.-W.; Jiang, C.-s.; Heben, M. J.; Zhao, D.; Ellingson, R. J.; Podraza, N. J.; Al-Jassim, M.; Yan, Y. Low-Bandgap Mixed Tin-Lead Iodide Perovskites with Reduced Methylammonium for Simultaneous Enhancement of Solar Cell Efficiency and Stability. Nat. Energy 2020, 5, 768–776.
- 136 Yang, H.; Chen, W.; Yu, Y.; Shen, Y.; Yang, H.; Li, X.; Zhang, B.; Chen, J.-D.; Tang, J.-X.; Li, Y.; Li, Y. Regulating Charge Carrier Recombination in the Interconnecting Layer to Boost the Efficiency and Stability of Monolithic Perovskite/Organic Tandem Solar Cells. Adv. Mater. 2022, 2208604.
- 137 Xu, R.; Min, L.; Qi, Z.; Zhang, X.; Jian, J.; Ji, Y.; Qian, F.; Fan, J.; Kan, C.; Wang, H.; Tian, W.; Li, L.; Li, W.; Yang, H. Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Appl. Mater. Interfaces 2020, 12, 16462–16468.
- 138 Sim, S. H.; Kang, K. T.; Lee, S.; Lee, M.; Taniguchi, H.; Kim, S.; Roh, S.; Oh, J. H.; Lee, S. A.; Bae, J.-S.; Jang, J. H.; Hwang, J.; Han, S.; Park, T.; Choi, W. S. Indium-Free Amorphous Ca-Al-O Thin Film as a Transparent Conducting Oxide. Chem. Mater. 2019, 31, 8019–8025.
- 139 Kim, B. H.; Staller, C. M.; Cho, S. H.; Heo, S.; Garrison, C. E.; Kim, J.; Milliron, D. J. High Mobility in Nanocrystal-Based Transparent Conducting Oxide Thin Films. ACS Nano 2018, 12, 3200–3208.
- 140 Eperon, G. E.; Hörantner, M. T.; Snaith, H. J. Metal Halide Perovskite Tandem and Multiple-Junction Photovoltaics. Nat. Rev. Chem. 2017, 1, 95.
- 141 He, R.; Ren, S.; Chen, C.; Yi, Z.; Luo, Y.; Lai, H.; Wang, W.; Zeng, G.; Hao, X.; Wang, Y.; Zhang, J.; Wang, C.; Wu, L.; Fu, F.; Zhao, D. Wide-Bandgap Organic-Inorganic Hybrid and All-Inorganic Perovskite Solar Cells and Their Application in All-Perovskite Tandem Solar Cells. Energy Environ. Sci. 2021, 14, 5723–5759.
- 142 Beckford, J.; Behera, M. K.; Yarbrough, K.; Obasogie, B.; Pradhan, S. K.; Bahoura, M. Gallium Doped Zinc Oxide Thin Films as Transparent Conducting Oxide for Thin-Film Heaters. AIP Adv. 2021, 11, 075208.
- 143 Ko, Y.; Park, H.; Lee, C.; Kang, Y.; Jun, Y. Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. Adv. Mater. 2020, 32, 2002196.
- 144 De Bastiani, M.; Subbiah, A. S.; Aydin, E.; Isikgor, F. H.; Allen, T. G.; De Wolf, S. Recombination Junctions for Efficient Monolithic Perovskite- Based Tandem Solar Cells: Physical Principles, Properties, Processing and Prospects. Mater. Horiz. 2020, 7, 2791–2809.
- 145 Chang, C.-Y.; Huang, W.-K.; Chang, Y.-C.; Lee, K.-T.; Siao, H.-Y. High-Performance Flexible Tandem Ppolymer Solar Cell Employing a Novel Cross-Linked Conductive Fullerene as an Electron Transport Layer. Chem. Mater., 2015, 27, 1869–1875.
- 146 Liu, C.; Du, X.; Gao, S.; Classen, A.; Osvet, A.; He, Y.; Mayrhofer, K.; Li, N.; Brabec, C. J. A Cross-Linked Interconnecting Layer Enabling Reliable and Reproducible Solution-Processing of Organic Tandem Solar Cells. Adv. Energy Mater. 2020, 10, 1903800.
- 147 Liu, J.; Lu, S.; Zhu, L.; Li, X.; Choy, C. H. C. Perovskite-Organic Hybrid Tandem Solar Cells Using Nanostructured Perovskite Layer as Light Window and PFN/Doped-MoO3/MoO3 Multi-Layer Interconnection Layer. Nanoscale 2016, 8, 3638–3646.
- 148 Liu, Y.; Renna, L. A.; Bag, M.; Page, Z. A.; Kim, P.; Choi, J.; Emrick, T.; Venkataraman, D.; Russell, T. P. High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. Perovskite-Organic Hybrid Tandem Solar Cells Using Nanostructured Perovskite Layer as Light Window and PFN/Doped-MoO3/MoO3 Multi-Layer Interconnection Layer. ACS Appl. Mater. Interfaces 2016, 8, 7070–7076.