Copper-Catalyzed [3 + 2 + 1] Cycloaddition of Alkenes with Benzoquinones and Dicarbonyl Compounds via Tandem Oxidative Dicarbofunctionalization/Cyclization Sequence
Tianxing Du
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorSong Li
School of Ocean, Shandong University, Weihai, Shandong, 264209 China
Search for more papers by this authorYunfei He
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorHuan Long
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Xigong Liu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Hai-Bei Li
School of Ocean, Shandong University, Weihai, Shandong, 264209 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lei Liu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorTianxing Du
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorSong Li
School of Ocean, Shandong University, Weihai, Shandong, 264209 China
Search for more papers by this authorYunfei He
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorHuan Long
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Xigong Liu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Hai-Bei Li
School of Ocean, Shandong University, Weihai, Shandong, 264209 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lei Liu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Developed is an efficient three-component [3 + 2 + 1] cycloaddition of simple alkenes with two C—H substrates via oxidative dicarbofunctionalization/cyclization sequence. The copper-catalyzed reaction involves the formation of two C—C bonds and one C—O bond through the cleavage of three C—H bonds in a single operation. The method has an excellent functional group tolerance, and features a broad substrate scope, affording a variety of functionalized chromenes in good yields.
Supporting Information
Filename | Description |
---|---|
cjoc202200113-sup-0001-Supinfo.pdfPDF document, 3.4 MB |
Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Stereoselective Alkene Synthesis , Ed.: Wang, J., Springer, Berlin, 2012;
(b) Williams, J. M. J. Preparation of Alkenes: A Practical Approach, Oxford University Press, Oxford, 1996;
10.1093/oso/9780198557951.001.0001 Google Scholar(c) Negishi, E.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd-Catalyzed Alkenylation-Carbonyl Olefination Synergy. Acc. Chem. Res. 2008, 41, 1474–1485; (d) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Catalytic Asymmetric Dihydroxylation. Chem. Rev. 1994, 94, 2483–2547; (e) Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Catalytic, Stereoselective Dihalogenation of Alkenes: Challenges and Opportunities. Angew. Chem. Int. Ed. 2015, 54, 15642–15682; (f) Lu, F. D.; He, G.-F.; Lu, L.-Q.; Xiao, W.-J. Metallaphotoredox Catalysis for Multicomponent Coupling Reactions. Green Chem. 2021, 23, 5379–5393.
- 2For selected reviews of alkene difunctionalization: (a) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications. Chem. Rev. 2011, 111, 2981–3019; (b) Merino, E.; Nevado, C. Addition of CF3 Across Unsaturated Moieties: A Powerful Functionalization tool. Chem. Soc. Rev. 2014, 43, 6598–6608; (c) Yin, G.; Mu, X.; Liu, G. Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes: Bond Forming at a High-Valent Palladium Center. Acc. Chem. Res. 2016, 49, 2413–2423; (d) Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Transition-Metal-Catalyzed Three-Component Difunctionalizations of Alkenes. Chem. Asian J. 2018, 13, 2277–2291; (e) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Recent Advances in Copper-catalysed Radical Involved Asymmetric 1,2-Difunctionalization of Alkenes. Chem. Soc. Rev. 2020, 49, 32–48; (f) Li, Y.; Wu, D.; Cheng, H.-G.; Yin, G. Difunctionalization of Alkenes Involving Metal Migration. Angew. Chem. Int. Ed. 2020, 59, 7990–8003; (g) Derosaa, J.; Apolinara, O.; Kanga, T.; Trana, V. T.; Engle, K. M. Recent Developments in Nickel-catalyzed Intermolecular Dicarbofunctionalization of Alkenes. Chem. Sci. 2020, 11, 4287–4296; (h) White, D. R.; Bornowski, E. C.; Wolfe, J. P. Pd-Catalyzed C-C, C-N, and C-O Bond-Forming Difunctionalization Reactions of Alkenes Bearing Tethered Aryl/Alkenyl Triflates. Isr. J. Chem. 2020, 60, 259–267; (i) Tu, H.-Y.; Zhu, S.; Qing, F.-L.; Chu, L. Recent Advances in Nickel-Catalyzed Three-Component Difunctionalization of Unactivated Alkenes. Synthesis 2020, 52, 1346–1356; (j) Chen, X.; Xiao, F.; He, W.-M. Recent Developments in The Difunctionalization of Alkenes with C-N Bond Formation. Org. Chem. Front. 2021, 8, 5206–5228.
- 3For selected reviews of alkene dicarbofunctionalization: (a) Wickham, L. M.; Giri, R. Transition Metal (Ni, Cu, Pd)-Catalyzed Alkene Dicarbofunctionalization Reactions. Acc. Chem. Res. 2021, 54, 3415–3437; (b) Qi, X.; Diao, T. Nickel-Catalyzed Dicarbofunctionalization of Alkenes. ACS Catal. 2020, 10, 8542–8556; (c) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Recent Developments in Nickel-catalyzed Intermolecular Dicarbofunctionalization of Alkenes. Chem. Sci. 2020, 11, 4287–4296; (d) Luo, Y.-C.; Xu, C.; Zhang, X. Nickel-Catalyzed Dicarbofunctionalization of Alkenes. Chin. J. Chem. 2020, 38, 1371–1394; (e) Zhu, S.; Zhao, X,; Li, H.; Chu, L. Catalytic Three-component Dicarbofunctionalization Reactions Involving Radical Capture by Nickel. Chem. Soc. Rev. 2021, 50, 10836–10856; (f) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Transition Metal-Catalyzed Dicarbofunctionalization of Unactivated Olefins. Chem. Rec. 2018, 18, 1314–1340; (g) Lin, J.; Song, R.-J.; Hu, M.; Li, J.-H. Recent Advances in the Intermolecular Oxidative Difunctionalization of Alkenes. Chem. Rec. 2019, 19, 440–451; (h) Li, Y.; Liu, J.-B.; He, F.-S.; Wu, J. Photoredox-Catalyzed Functionalization of Alkenes with Thiourea Dioxide: Construction of Alkyl Sulfones or Sulfonamides. Chin. J. Chem. 2020, 38, 361–366; (i) Simur, T. T.; Dagnaw, F. W.; Yu, Y.-J. Zhang, F.-L.; Wang, Y.-F. 4-Dimethylaminopyridine-Boryl Radical Promoted Monodefluorinative Alkylation of 3,3-Difluorooxindoles. Chin. J. Chem. 2022, 40, 577–581; (j) Song, X.-Y.; Zhao, L.-P.; Wang, L.; Tang, Y. Highly Stereoselective Direct Construction of Diaryl-Substituted Cyclobutanes. Chin. J. Chem. 2020, 38, 259–262.
- 4Isolated examples of three-component alkene dicarbofunctionalization , see: (a) Xu, S.; Chen, H.; Zhou, Z.; Kong, W. Three-Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic C-H Bonds. Angew. Chem. Int. Ed. 2021, 60, 7405–7411; (b) Campbell, M. W.; Yuan, M.; Polites, V. C.; Gutierrez, O.; Molander, G. A. Photochemical C-H Activation Enables Nickel-Catalyzed Olefin Dicarbofunctionalization. J. Am. Chem. Soc. 2021, 143, 3901–3910; (c) Liu, Z.; Zeng, T.; Yang, K. S.; Engle, K. M. β,γ-Vicinal Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Directed Nucleopalladation. J. Am. Chem. Soc. 2016, 138, 15122–15125; (d) Ouyang, X.-H.; Song, R.-J.; Hu, M.; Yang, Y.; Li, J.-H. Silver-Mediated Intermolecular 1,2-Alkylarylation of Styrenes with α-Carbonyl Alkyl Bromides and Indoles. Angew. Chem. Int. Ed. 2016, 55, 3187–3191; (e) Ma, Y.; Zhang, D.; Yan, Z.; Wang, M.; Bian, C.; Gao, X.; Bunel, E. E.; Lei, A. Iron-Catalyzed Oxidative C-H/C-H Cross-Coupling between Electron- Rich Arenes and Alkenes. Org. Lett. 2015, 17, 2174–2177; (f) Wang, X.; Han, Y.-F.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. The photoredox alkylarylation of styrenes with alkyl N-hydroxyphthalimide esters and arenes involving C-H functionalization. Chem. Commun. 2019, 55, 14637–14640; (g) Niu, T.; Liu, J.; Wu, X.; Zhu, C. Radical Heteroarylalkylation of Alkenes via Three-Component Docking-Migration Thioetherification Cascade. Chin. J. Chem. 2020, 38, 803–806; (h) Wang, L.; Zhang, H.; Zhu, C.; Feng, C. Expedient Trifluoromethylacylation of Styrenes Enabled by Photoredox Catalysis. Chin. J. Chem. 2022, 40, 59–64; (i) Zhuang, W.; Chen, P.; Liu, G. Enantioselective Arylcyanation of Styrenes via Copper-Catalyzed Radical Relay. Chin. J. Chem. 2021, 39, 50–54.
- 5Examples of alkene dicarbofunctionalization involving two C−H reagents, see: (a) Rena, O.; Lapointe, D.; Fagnou, K. Domino Palladium- Catalyzed Heck-Intermolecular Direct Arylation Reactions. Org. Lett. 2009, 11, 4560–4563; (b) Wu, X.-X.; Chen, W.-L.; Shen, Y.; Chen, S.; Xu, P.-F.; Liang, Y.-M. Palladium-Catalyzed Domino Heck/Intermolecular C−H Bond Functionalization: Efficient Synthesis of Alkylated Polyfluoroarene Derivatives. Org. Lett. 2016, 18, 1784–1787; (c) Zhang, H.; Chen, P.; Liu, G. Palladium-Catalyzed Oxidative Arylalkylation of Unactivated Alkenes: Dual C−H Bond Cleavage of Anilines and Acetonitrile. Synlett 2012, 23, 2749–2752; (d) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Synthesis of Oxindoles by Iron-Catalyzed Oxidative 1,2-Alkylarylation of Activated Alkenes with an Aryl C(sp2)−H Bond and a C(sp3)−H Bond Adjacent to a Heteroatom. Angew. Chem. Int. Ed. 2013, 52, 3638–3641; (e) Zhou, M.-B.; Song, R.-J.; Ouyang, X.-H.; Liu, Y.; Wei, W.-T.; Deng, G.-B.; Li, J.-H. Metal-free Oxidative Tandem Coupling of Activated Alkenes with Carbonyl C(sp2)−H bonds and Aryl C(sp2)−H Bonds Using TBHP. Chem. Sci. 2013, 4, 2690–2694; (f) Zhou, M.-B.; Wang, C.-Y.; Song, R.-J.; Liu, Y.; Wei, W.-T.; Li, J.-H. Oxidative 1,2-Difunctionalization of Activated Alkenes with Benzylic C(sp3)−H Bonds and Aryl C(sp2)−H Bonds. Chem. Commun. 2013, 49, 10817–10819; (g) Liu, Y.; Zhang, J.-L.; Song, R.-J.; Li, J.-H. 1,2-Alkylarylation of Activated Alkenes with Dual C-H Bonds of Arenes and Alkyl Halides toward Polyhalo-substituted Oxindoles. Org. Chem. Front. 2014, 1, 1289–1294; (h) Ouyang, X.-H.; Li, Y.; Song, R.-J.; Hu, M.; Luo, S.; Li, J.-H. C(sp3)−H bonds enabled by synergistic photoredox catalysis and iron catalysis. Sci. Adv. 2019, 5, eaav9839.
- 6For selected examples of intramolecular cyclization/coupling reaction: (a) Thapa, S.; Basnet, P.; Giri, R. Copper-Catalyzed Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross Coupling. J. Am. Chem. Soc. 2017, 139, 5700–5703; (b) Grigg, R.; Sansano, J.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thornton-Pett, M.; Wilson, D. Palladium Catalysed Tandem Cyclisation-anion Capture Processes. Part 3. Organoboron Anion Transfer Agents. Tetrahedron1997, 53, 11803–11826; (c) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang, Z.-M.; Zhang, J. Enantioselective Difunctionalization of Alkenes by a Palladium-Catalyzed Heck/Sonogashira Sequence. Angew. Chem. Int. Ed. 2020, 59, 2769–2775; (d) Koy, M.; Bellotti, P.; Katzenburg, F.; Daniliuc, C. G.; Glorius, F. Synthesis of All-Carbon Quaternary Centers by Palladium-Catalyzed Olefin Dicarbofunctionalization. Angew. Chem. Int. Ed. 2020, 59, 2375–2379; (e) Dhungana, R. K.; Shrestha, B.; Thapa-Magar, R.; Basnet, P.; Giri, R. Pd-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Unactivated Olefins by a Heck Reaction/Enolate Cyclization Cascade. Org. Lett. 2017, 19, 2154–2157; (f) Huang, D.; Olivieri, D.; Sun, Y.; Zhang, P.; Newhouse, T. R. Nickel-Catalyzed Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. J. Am. Chem. Soc. 2019, 141, 16249–16254; (g) Phapale, V. B.; Buñuel, E.; García- Iglesias, M.; Cárdenas, D. J. Ni Catalyzed Cascade Formation of C(sp3)-C(sp3) Bonds by Cyclization and Cross-Coupling Reactions of Iodoalkanes with Alkyl Zinc Halides. Angew. Chem. Int. Ed. 2007, 46, 8790–8795; (h) Cong, H.; Fu, G. C. Catalytic Enantioselective Cyclization/Cross-Coupling with Alkyl Electrophiles. J. Am. Chem. Soc. 2014, 136, 3788–3791; (i) You, W.; Brown, M. K. Diarylation of Alkenes by a Cu-Catalyzed Migratory Insertion/Cross-Coupling Cascade. J. Am. Chem. Soc. 2014, 136, 14730–14733.
- 7 Godineau, E.; Landais, Y. Multicomponent Radical Processes: Synthesis of Substituted Piperidinones. J. Am. Chem. Soc. 2007, 129, 12662–12663.
- 8(a) Schweizer, E. E.; Meeder-Nycz, O. In Chromenes, Chromanes, Chromones, Ed.: Ellis, G. P., Wiley-Interscience, New York, 1977, Vol. 31, pp. 11–139; (b) Ellis, G. P.; Lockhart, I. M. In The Chemistry of Heterocyclic Compounds: Chromenes, Chromanones, and Chromones, Ed.: Ellis, G. P., Wiley-VCH, New York, 2009, Vol. 31, pp. 1–1196; (c) Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chem. Rev. 2004, 104, 3059–3078; (d) Moorthy, J. N.; Mandal, S.; Mukhopadhyay, A.; Samanta, S. Helicity as a Steric Force: Stabilization and Helicity-Dependent Reversion of Colored o-Quinonoid Intermediates of Helical Chromenes. J. Am. Chem. Soc. 2013, 135, 6872–6884; (e) Horton, D. A.; Bourne, G. T.; Smythe, M. L. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev. 2003, 103, 893–930; (f) Majumdar, N.; Paul, N. D.; Mandal, S.; de Bruin, B.; Wulff, W. D. Catalytic Synthesis of 2H-Chromenes. ACS Catal. 2015, 5, 2329–2366.
- 9 Feng, G.; Sun, S.; Liu, G.; Long, H.; Liu, L. Three-Component Oxyarylation of Alkenes Enables Access to C3-Substituted Dihydrobenzofurans. Org. Lett. 2018, 20, 7522–7525.
- 10 Li, Y.; Lu, R.; Sun, S.; Liu, L. Metal-Free Three-Component Oxyalkynylation of Alkenes. Org. Lett. 2018, 20, 6836–6839.
- 11(a) Guo, X.; Mayr, H. Manifestation of Polar Reaction Pathways of 2,3-Dichloro-5,6-dicyano-p-benzoquinone. J. Am. Chem. Soc. 2013, 135, 12377–12387; (b) Shevchenko, G. A.; Oppelaar, B.; List, B. An Unexpected α-Oxidation of Cyclic Ketones with 1,4-Benzoquinone by Enol Catalysis. Angew. Chem. Int. Ed. 2018, 57, 10756–10759; (c) Parker, K. A.; Mindt, T. L. Electrocyclic Ring Closure of the Enols of Vinyl Quinones. A 2H-Chromene Synthesis. Org. Lett. 2001, 3, 3875–3878; (d) Kumli, E.; Montermini, F.; Renaud, P. Radical Addition to 1,4-Benzoquinones: Addition at O- versus C-Atom. Org. Lett. 2006, 8, 5861–5864.