NCP-Type Pincer Iridium Complexes Catalyzed Transfer-Dehydrogenation of Alkanes and Heterocycles†
Yulei Wang
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorLu Qian
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorZhidao Huang
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Guixia Liu
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zheng Huang
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
China School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, Zhejiang, 310024 China
Chang-Kung Chuang Institute, East China Normal University, Shanghai, 200062 China
E-mail: [email protected], [email protected]Search for more papers by this authorYulei Wang
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorLu Qian
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorZhidao Huang
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Guixia Liu
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Zheng Huang
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
China School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, Zhejiang, 310024 China
Chang-Kung Chuang Institute, East China Normal University, Shanghai, 200062 China
E-mail: [email protected], [email protected]Search for more papers by this author†Dedicated to the 70th Anniversary of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
Summary of main observation and conclusion
A series of NCP-type pincer iridium complexes, (RNCCP)IrHCl (2a—2c) and (BQ-NCOP)IrHCl 3, have been studied for catalytic transfer alkane dehydrogenation. Complex 3 containing a rigid benzoquinoline backbone exhibits high activity and robustness in dehydrogenation of alkanes to form alkenes. Even more importantly, this catalyst system was also highly effective in the dehydrogenation of a wide range of heterocycles to furnish heteroarenes.
Supporting Information
Filename | Description |
---|---|
cjoc202000097-sup-0001-Supinfo.pdfPDF document, 1.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Weissermel, K.; Arpe, H.-J. Olefins. In Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2008, pp. 59−89.
- 2For recent reviews, see: (a) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehydrogenation of Alkanes and Aliphatic Groups by Pincer–Ligated Metal Complexes. Chem. Rev. 2017, 117, 12357–12384;
(b) Tang, X.; Jia, X.; Huang, Z. Challenges and Opportunities for Alkane Functionalisation Using Molecular Catalysts. Chem. Sci. 2018, 9, 288–299;
(c) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev. 2011, 111, 1761–1779;
(d) Zhang, Y.; Yao, W.; Fang, H.; Hu, A.; Huang, Z. Catalytic Alkane Dehydrogenations. Sci. Bull. 2015, 60, 1316–1331;
(e) Findlater, M.; Choi, J.; Goldman, A. S.; Brookhart, M. Alkane Dehydrogenation. In Alkane C–H Activation by Single-Site Metal Catalysis, Ed.: Pérez, P. J., Springer, Netherlands, 2012, pp. 113–141;
(f) Choi, J.; Goldman, A. S. Ir-Catalyzed Functionalization of C–H Bonds. In Iridium Catalysis, Ed.: Andersson, P. G., Springer, Berlin, 2011, pp. 139–167.
10.1007/978-3-642-15334-1_6 Google Scholar
- 3(a) Gupta, M.; Hagen, C.; Flesher, R. J.; Kaska, W. C.; Jensen, C. M. A Highly Active Alkane Dehydrogenation Catalyst: Stabilization of Dihydrido Rhodium and Iridium Complexes by a P–C–P Pincer Ligand. Chem. Commun. 1996, 2083–2084; (b) Xu, W.; Rosini, G. P.; Krogh–Jespersen, K.; Goldman, A. S.; Gupta, M.; Jensen, C. M.; Kaska, W. C. Thermochemical Alkane Dehydrogenation Catalyzed in Solution without the Use of a Hydrogen Acceptor. Chem. Commun. 1997, 2273–2274; (c) Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. Dehydrogenation of n-Alkanes Catalyzed by Iridium “Pincer” Complexes: Regioselective Formation of α-Olefins. J. Am. Chem. Soc. 1999, 121, 4086–4087.
- 4(a) Kundu, S.; Choliy, Y.; Zhuo, G.; Ahuja, R.; Emge, T. J.; Warmuth, R.; Brookhart, M.; Krogh-Jespersen K.; Goldman, A. S. Rational Design and Synthesis of Highly Active Pincer-Iridium Catalysts for Alkane Dehydrogenation. Organometallics 2009, 28, 5432–5444; (b) Punji, B.; Emge T. J.; Goldman, A. S. A Highly Stable Adamantyl-Substituted Pincer-Ligated Iridium Catalyst for Alkane Dehydrogenation. Organometallics 2010, 29, 2702–2709.
- 5(a) Chianese, A. R.; Mo, A.; Lampland, N. L.; Swartz, R. L.; Bremer, P. T. Iridium Complexes of CCC-Pincer N-Heterocyclic Carbene Ligands: Synthesis and Catalytic C−H Functionalization. Organometallics 2010, 29, 3019–3026; (b) Zuo, W.; Braunstein, P. N-Heterocyclic Dicarbene Iridium(III) Pincer Complexes Featuring Mixed NHC/Abnormal NHC Ligands and Their Applications in the Transfer Dehydrogenation of Cyclooctane. Organometallics 2012, 31, 2606–2615; (c) Liu, X.; Braunstein, P. Complexes with Hybrid Phosphorus-NHC Ligands: Pincer-Type Ir Hydrides, Dinuclear Ag and Ir and Tetranuclear Cu and Ag Complexes. Inorg. Chem. 2013, 52, 7367–7379; (d) Tanoue, K.; Yamashita, M. Synthesis of Pincer Iridium Complexes Bearing a Boron Atom and iPr-Substituted Phosphorus Atoms: Application to Catalytic Transfer Dehydrogenation of Alkanes. Organometallics 2015, 34, 4011–4017; (e) Shih, W.-C.; Ozerov, O. V. Synthesis and Characterization of PBP Pincer Iridium Complexes and Their Application in Alkane Transfer Dehydrogenation. Organometallics 2017, 36, 228–23.
- 6(a) Göttker-Schnetmann, I.; White, P. S.; Brookhart, M. Iridium Bis(phosphinite) p-XPCP Pincer Complexes: Highly Active Catalysts for the Transfer Dehydrogenation of Alkanes. J. Am. Chem. Soc. 2004, 126, 1804–1811; (b) Göttker-Schnetmann, I.; Brookhart, M. Mechanistic Studies of the Transfer Dehydrogenation of Cyclooctane Catalyzed by Iridium Bis(phosphinite) p-XPCP Pincer Complexes. J. Am. Chem. Soc. 2004, 126, 9330–9338; (c) Morales-Morales, D.; Redón, R.; Yung, C.; Jensen, C. M. Dehydrogenation of Alkanes Catalyzed by an Iridium Phosphinito PCP Pincer Complex. Inorg. Chim. Acta 2004, 357, 2953–2956.
- 7(a) Yao, W.; Zhang, Y.; Jia, X.; Huang, Z. Selective Catalytic Transfer Dehydrogenation of Alkanes and Heterocycles by an Iridium Pincer Complex. Angew. Chem. Int. Ed. 2014, 53, 1390–1394; (b) Yao, W.; Jia, X.; Leng, X.; Goldman, A. S.; Brookhart, M.; Huang, Z. Catalytic Alkane Transfer-Dehydrogenation by PSCOP Iridium Pincer Complexes. Polyhedron 2016, 116, 12–19; (c) Jia, X.; Huang, Z. Conversion of Alkanes to Linear Alkylsilanes Using an Iridium-Iron-Catalysed Tandem Dehydrogenation-Isomerization-Hydrosilylation. Nat. Chem. 2015, 8, 157–161; (d) Tang, X.; Jia, X.; Huang, Z. Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines. J. Am. Chem. Soc. 2018, 140, 4157–4163.
- 8 Bézier, D.; Brookhart, M. Applications of PC(sp3)P Iridium Complexes in Transfer Dehydrogenation of Alkanes. ACS Catal. 2014, 4, 3411–3420.
- 9 Kuklin, S. A.; Sheloumov, A. M.; Dolgushin, F. M.; Ezernitskaya, M. G.; Peregudov, A. S.; Petrovskii, P. V.; Koridze, A. A. Highly Active Iridium Catalysts for Alkane Dehydrogenation. Synthesis and Properties of Iridium Bis(phosphine) Pincer Complexes Based on Ferrocene and Ruthenocene. Organometallics 2006, 25, 5466–5476.
- 10(a) Haenel, M. W.; Oevers, S.; Angermund, K.; Kaska, W. C.; Fan, H. J.; Hall, M. B. Thermally Stable Homogeneous Catalysts for Alkane Dehydrogenation. Angew. Chem. Int. Ed. 2001, 40, 3596–3600;
10.1002/1521-3773(20011001)40:19<3596::AID-ANIE3596>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar(b) Shi, Y.; Suguri, T.; Dohi, C.; Yamada, H.; Kojima, S.; Yamamoto, Y. Highly Active Catalysts for the Transfer Dehydrogenation of Alkanes: Synthesis and Application of Novel 7-6-7 Ring-Based Pincer Iridium Complexes. Chem. Eur. J. 2013, 19, 10672–10689.
- 11(a) Gu, X.-Q.; Chen, W.; Morales-Morales, D.; Jensen, C. M. Dehydrogenation of Secondary Amines to Imines Catalyzed by an Iridium PCP Pincer Complex: Initial Aliphatic or Direct Amino Dehydrogenation. J. Mol. Catal. A 2002, 189, 119–124; (b) Zhang, X.; Fried, A.; Knapp, S.; Goldman, A. S. Novel Synthesis of Enamines by Iridium- Catalyzed Dehydrogenation of Tertiary Amines. Chem. Commun. 2003, 2060–2061.
- 12 Lyons, T. W.; Bézier, D.; Brookhart, M. Iridium Pincer-Catalyzed Dehydrogenation of Ethers Featuring Ethylene as the Hydrogen Acceptor. Organometallics 2015, 34, 4058–4062.
- 13(a) Brayton, D. F.; Jensen, C. M. Solvent Free Selective Dehydrogenation of Indolic and Carbazolic Molecules with an Iridium Pincer Catalyst. Chem. Commun. 2014, 50, 5987–5989; (b) Brayton, D. F.; Beaumont, P. R.; Fukushima, E. Y.; Sartain, H. T.; Morales-Morales, D.; Jensen, C. M. Synthesis, Characterization, and Dehydrogenation Activity of an Iridium Arsenic Based Pincer Catalyst. Organometallics 2014, 33, 5198–5202.
- 14(a) Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Acceptorless Dehydrogenation of Nitrogen Heterocycles with a Versatile Iridium Catalyst. Angew. Chem. Int. Ed. 2013, 52, 6983–6987; (b) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.-i. Homogeneous Catalytic System for Reversible Dehydrogenation-Hydrogenation Reactions of Nitrogen Heterocycles with Reversible Interconversion of Catalytic Species. J. Am. Chem. Soc. 2009, 131, 8410–8412; (c) Kusumoto, S.; Akiyama, M.; Nozaki, K. Acceptorless Dehydrogenation of C−C Single Bonds Adjacent to Functional Groups by Metal-Ligand Cooperation. J. Am. Chem. Soc. 2013, 135, 18726–18729; (d) Chakraborty, S.; Brennessel, W. W.; Jones, W. D. A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles. J. Am. Chem. Soc. 2014, 136, 8564–8567; (e) Fujita, K.-i.; Tanaka, Y.; Kobayashi, M.; Yamaguchi, R. Homogeneous Perdehydrogenation and Perhydrogenation of Fused Bicyclic N-Heterocycles Catalyzed by Iridium Complexes Bearing a Functional Bipyridonate Ligand. J. Am. Chem. Soc. 2014, 136, 4829–4832; (f) Wendlandt, A. E.; Stahl, S. S. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst. J. Am. Chem. Soc. 2014, 136, 506–512; (g) Iosub, A. V.; Stahl, S. S. Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives. J. Am. Chem. Soc. 2015, 137, 3454–3457.
- 15(a) Cui, Y.; Kwok, S.; Bucholtz, A.; Davis, B.; Whitney, R. A.; Jessop, P. G. The Effect of Substitution on the Utility of Piperidines and Octahydroindoles for Reversible Hydrogenstorage. New. J. Chem. 2008, 32, 1027–1037; (b) Esteruelas, M. A.; Lezáun, V.; Martínez, A.; Oliván, M.; Oñate, E. Osmium Hydride Acetylacetonate Complexes and Their Application in Acceptorless Dehydrogenative Coupling of Alcohols and Amines and for the Dehydrogenation of Cyclic Amines. Organometallics 2017, 36, 2996–3004; (c) Chakraborty, S.; Brennessel, W. W.; Jones, W. D. A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles. J. Am. Chem. Soc. 2014, 136, 8564–8567.
- 16 Zhang, Y.; Fang, H.; Yao, W.; Leng, X.; Huang, Z. Synthesis of Pincer Hydrido Ruthenium Olefin Complexes for Catalytic Alkane Dehydrogenation. Organometallics 2016, 35, 181–188.
- 17(a) Jia, X.; Zhang, L.; Qin, C.; Leng, X.; Huang, Z. Iridium Complexes of New NCP Pincer Ligands: Catalytic Alkane Dehydrogenation and Alkene Isomerization. Chem. Commun. 2014, 50, 11056–11059; (b) Guo, L.; Ma, X.; Fang, H.; Jia, X.; Huang, Z. A General and Mild Catalytic α-Alkylation of Unactivated Esters Using Alcohols. Angew. Chem. Int. Ed. 2015, 54, 4023–4027; (c) Tanoue, K.; Yamashita, M. Synthesis of Pincer Iridium Complexes Bearing a Boron Atom and iPr-Substituted Phosphorus Atoms: Application to Catalytic Transfer Dehydrogenation of Alkanes. Organometallics 2015, 34, 4011–4017; (d) Jia, X.; Huang, Z. Synthesis and Characterization of a Tetradentate PNCP Iridium Complex for Catalytic Alkane Dehydrogenation. Sci. China Chem. 2015, 58, 1340–1344.
- 18 Wang, Y.; Qin, C.; Jia, X.; Leng, X.; Huang, Z. An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1-Alkenes to trans-2-Alkenes. Angew. Chem. Int. Ed. 2017, 56, 1614–1618.
- 19(a) Wang, Y.; Huang, Z.-D.; Leng, X.; Zhu, H.; Liu, G.; Huang, Z. Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism. J. Am. Chem. Soc. 2018, 140, 4417–4429; (b) Wang, Y.; Huang, Z.-D.; Huang, Z. Catalyst as Colour Indicator for Endpoint Detection to Enable Selective Alkyne trans–Hydrogenation with Ethanol. Nat. Catal. 2019, 2, 529–536.
- 20 Biswas, S.; Huang, Z.; Choliy, Y.; Wang, D. Y.; Brookhart, M.; Krogh–Jespersen, K.; Goldman, A. S. Olefin Isomerization by Iridium Pincer Catalysts. Experimental Evidence for an η3-Allyl Pathway and an Unconventional Mechanism Predicted by DFT Calculations. J. Am. Chem. Soc. 2012, 134, 13276–13295.