Encrypting Chemical Reactivity in Protein Sequences toward Information-Coded Reactions†
Fan Zhang
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Wen-Bin Zhang
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
E-mail: [email protected]Search for more papers by this authorFan Zhang
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Wen-Bin Zhang
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
E-mail: [email protected]Search for more papers by this author†Dedicated to Professor Lina Zhang on the occasion of her 80th birthday.
Abstract
Controlling chemical reactivity has been the central theme in chemistry. Herein, we review the recent progress on the development of genetically encoded protein coupling reactions and their potential applications. The chemical reactivity is encoded in the protein sequences. The information is read out by folding and molecular recognition between two reactive components and subsequently translated into chemical bonding via autocatalysis. It has emerged as a unique way to tune the chemical reactivity and is regarded as one type of information-coded reactions. Not only has it received many applications such as protein topology engineering, bioconjugation, biomaterials and synthetic biology, but also its principle may be extended beyond protein chemistry to enable new modes of supramolecular interactions that promote chemical bonding and that are simultaneously reinforced by covalent bonds.
References
- 1 Reinhold-Hurek, B.; Shub, D. A. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 1992, 357, 173–176.
- 2 Cech, T. R. The Generality of Self-Splicing RNA: Relationship to Nuclear mRNA Splicing. Cell 1986, 44, 207–210.
- 3 Kruger, K.; Grabowski, P. J.; Zaug, A. J.; Sands, J.; Gottschling, D. E.; Cech, T. R. Self-Splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Sequence of Tetrahymena. Cell 1982, 31, 147–157.
- 4 Schwarz-Linek, U.; Banfield, M. J. Yet more intramolecular cross-links in Gram-positive surface proteins. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1229–1230.
- 5 Crick, F. Central Dogma of Molecular Biology. Nature 1970, 227, 561–563.
- 6 Shah, N. H.; Muir, T. W. Inteins: Nature's Gift to Protein Chemists. Chem. Sci. 2014, 5, 446–461.
- 7 Fernandes, J. A. L.; Prandini, T. H. R.; Castro, M. A.; Arantes, T. D.; Giacobino, J.; Bagagli, E.; Theodoro, R. C. Evolution and Application of Inteins in Candida species: A Review. Front. Microbiol. 2016, 7, 1585.
- 8 Novikova, O.; Topilina, N.; Belfort, M. Enigmatic Distribution, Evolution, and Function of Inteins. J. Biol. Chem. 2014, 289, 14490–14497.
- 9 Eryilmaz, E.; Shah, N. H.; Muir, T. W.; Cowburn, D. Structural and Dynamical Features of Inteins and Implications on Protein Splicing. J. Biol. Chem. 2014, 289, 14506–14511.
- 10 Kang, H. J.; Coulibaly, F.; Clow, F.; Proft, T.; Baker, E. N. Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure. Science 2007, 318, 1625–1628.
- 11 Kwon, H.; Squire, C. J.; Young, P. G.; Baker, E. N. Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1367–1372.
- 12 Walden, M.; Edwards, J. M.; Dziewulska, A. M.; Bergmann, R.; Saalbach, G.; Kan, S. Y.; Miller, O. K.; Weckener, M.; Jackson, R. J.; Shirran, S. L.; Botting, C. H.; Florence, G. J.; Rohde, M.; Banfield, M. J.; Schwarz-Linek, U. An internal thioester in a pathogen surface protein mediates covalent host binding. eLife 2015, 4, 1–24.
- 13 Pointon, J. A.; Smith, W. D.; Saalbach, G.; Crow, A.; Kehoe, M. A.; Banfield, M. J. A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction. J. Biol. Chem. 2010, 285, 33858–33866.
- 14 Weisel, J. W. Fibrinogen and fibrin. Adv. Protein Chem. 2005, 70, 247–299.
- 15 Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533.
- 16 Hay, R. T. SUMO: a history of modification. Mol. Cell. 2005, 18, 1–12.
- 17 Hu, X.; Hu, H.; Melvin, J. A.; Clancy, K. W.; McCafferty, D. G.; Yang, W. Autocatalytic Intramolecular Isopeptide Bond Formation in Gram- Positive Bacterial Pili: A QM/MM Simulation. J. Am. Chem. Soc. 2011, 133, 478–485.
- 18 Hagan, R. M.; Bjornsson, R.; McMahon, S. A.; Schomburg, B.; Braithwaite, V.; Buhl, M.; Naismith, J. H.; Schwarz-Linek, U. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angew. Chem. Int. Ed. 2010, 49, 8421–8425.
- 19 Alegre-Cebollada, J.; Badilla, C. L.; Fernandez, J. M. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J. Biol. Chem. 2010, 285, 11235–11242.
- 20 Kang, H. J.; Baker, E. N. Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes. J. Biol. Chem. 2009, 284, 20729–20737.
- 21 Budzik, J. M.; Poor, C. B.; Faull, K. F.; Whitelegge, J. P.; He, C.; Schneewind, O. Intramolecular amide bonds stabilize pili on the surface of bacilli. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19992–19997.
- 22 El Mortaji, L.; Terrasse, R.; Dessen, A.; Vernet, T.; Di Guilmi, A. M. Stability and assembly of pilus subunits of Streptococcus pneumoniae. J. Biol. Chem. 2010, 285, 12405–12415.
- 23 Izore, T.; Contreras-Martel, C.; El Mortaji, L.; Manzano, C.; Terrasse, R.; Vernet, T.; Di Guilmi, A. M.; Dessen, A. Structural basis of host cell recognition by the pilus adhesin from Streptococcus pneumoniae. Structure 2010, 18, 106–115.
- 24 Kwon, H.; Young, P. G.; Squire, C. J.; Baker, E. N. Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability. Sci. Rep. 2017, 7, 42753–42761.
- 25 Wikoff, W. R.; Liljas, L.; Duda, R. L.; Tsuruta, H.; Hendrix, R. W.; Johnson, J. E. Topologically Linked Protein Rings in the Bacteriophage HK97 Capsid. Science 2000, 289, 2129–2133.
- 26 Alex Law, S. K.; Dodds, A. W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 1997, 6, 263–274.
- 27 Linke-Winnebeck, C.; Paterson, N. G.; Young, P. G.; Middleditch, M. J.; Greenwood, D. R.; Witte, G.; Baker, E. N. Structural model for covalent adhesion of the Streptococcus pyogenes pilus through a thioester bond. J. Biol. Chem. 2014, 289, 177–189.
- 28 Fang, J.; Zhang, W. B. Genetically Encoded Peptide-Protein Reactive Pairs. Acta Polym. Sin. 2018, 4, 429–444 (in Chinese).
- 29 Sun, F.; Zhang, W. B. Unleashing chemical power from protein sequence space toward genetically encoded “click” chemistry. Chin. Chem. Lett. 2017, 28, 2078–2084.
- 30 Veggiani, G.; Zakeri, B.; Howarth, M. Superglue from bacteria: unbreakable bridges for protein nanotechnology. Trends Biotechnol. 2014, 32, 506–512.
- 31 Zakeri, B.; Howarth, M. Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J. Am. Chem. Soc. 2010, 132, 4526–4527.
- 32 Zakeri, B.; Fierer, J. O.; Celik, E.; Chittock, E. C.; Schwarz-Linek, U.; Moy, V. T.; Howarth, M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 690–697.
- 33 Keeble, A. H.; Banerjee, A.; Ferla, M. P.; Reddington, S. C.; Anuar, I.; Howarth, M. Evolving Accelerated Amidation by SpyTag/SpyCatcher to Analyze Membrane Dynamics. Angew. Chem. Int. Ed. 2017, 56, 16521–16525.
- 34 Keeble, A. H.; Turkki, P.; Stokes, S.; Khairil Anuar, I. N. A.; Rahikainen, R.; Hytonen, V. P.; Howarth, M. Approaching infinite affinity through engineering of peptide-protein interaction. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 26523–26533.
- 35 Zhang, W. B.; Wu, X. L.; Yin, G. Z.; Shao, Y.; Cheng, S. Z. D. From protein domains to molecular nanoparticles: what can giant molecules learn from proteins? Mater. Horiz. 2017, 4, 117–132.
- 36 Tan, L. L.; Hoon, S. S.; Wong, F. T. Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly. PLoS One 2016, 11, e0165074.
- 37 Finn, R. D.; Coggill, P.; Eberhardt, R. Y.; Eddy, S. R.; Mistry, J.; Mitchell, A. L.; Potter, S. C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G. A.; Tate, J.; Bateman, A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016, 44, 279–285.
- 38 Proschel, M.; Kraner, M. E.; Horn, A. H. C.; Schafer, L.; Sonnewald, U.; Sticht, H. Probing the potential of CnaB-type domains for the design of tag/catcher systems. PLoS One 2017, 12, e0179740.
- 39 Veggiani, G.; Nakamura, T.; Brenner, M. D.; Gayet, R. V.; Yan, J.; Robinson, C. V.; Howarth, M. Programmable polyproteams built using twin peptide superglues. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 1202–1207.
- 40 Yu, Y.; Lutz, S. Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. 2011, 29, 18–25.
- 41 Romero, P. A.; Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 2009, 10, 866–876.
- 42 Liu, Y.; Liu, D.; Yang, W.; Wu, X. L.; Lai, L.; Zhang, W. B. Tuning SpyTag-SpyCatcher mutant pairs toward orthogonal reactivity encryption. Chem. Sci. 2017, 8, 6577–6582.
- 43 Cao, Y.; Liu, D.; Zhang, W. B. Supercharging SpyCatcher toward an intrinsically disordered protein with stimuli-responsive chemical reactivity. Chem. Commun. 2017, 53, 8830–8833.
- 44 Wu, W. H.; Wei, J.; Zhang, W. B. Controlling SpyTag/SpyCatcher Reactivity via Redox-Gated Conformational Restriction. ACS Macro Lett. 2018, 7, 1388–1393.
- 45 Zhang, X. J.; Wu, X. L.; Wang, X. W.; Liu, D.; Yang, S.; Zhang, W. B. SpyCatcher-NTEV: A Circularly Permuted, Disordered SpyCatcher Variant for Less Trace Ligation. Bioconjugate Chem. 2018, 29, 1622–1629.
- 46 Zhang, X. J.; Wu, X. L.; Liu, D.; Da, X. D.; Wang, X. W.; Yang, S.; Zhang, W. B. Engineering SpyCatcher Variants with Proteolytic Sites for Less-Trace Ligation. Chin. J. Chem. 2019, 37, 113–118.
- 47 Fierer, J. O.; Veggiani, G.; Howarth, M. SpyLigase peptide-peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1176–1181.
- 48 Wu, X. L.; Liu, Y.; Liu, D.; Sun, F.; Zhang, W. B. An Intrinsically Disordered Peptide-Peptide Stapler for Highly Efficient Protein Ligation Both in vivo and in vitro. J. Am. Chem. Soc. 2018, 140, 17474–17483.
- 49 Buldun, C. M.; Jean, J. X.; Bedford, M. R.; Howarth, M. SnoopLigase Catalyzes Peptide-Peptide Locking and Enables Solid-Phase Conjugate Isolation. J. Am. Chem. Soc. 2018, 140, 3008–3018.
- 50 Young, P. G.; Yosaatmadja, Y.; Harris, P. W.; Leung, I. K.; Baker, E. N.; Squire, C. J. Harnessing ester bond chemistry for protein ligation. Chem. Commun. 2017, 53, 1502–1505.
- 51 Xu, L.; Zhang, W. B. Topology: a unique dimension in protein engineering. Sci. China: Chem. 2017, 61, 3–16.
- 52 Cascales, L.; Craik, D. J. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org. Biomol. Chem. 2010, 8, 5035–5047.
- 53 Colgrave, M. L.; Craik, D. J. Thermal, Chemical, and Enzymatic Stability of the Cyclotide Kalata B1: The Importance of the Cyclic Cystine Knot. Biochemistry 2004, 43, 5965–5975.
- 54 Zhang, W. B.; Sun, F.; Tirrell, D. A.; Arnold, F. H. Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry. J. Am. Chem. Soc. 2013, 135, 13988–13997.
- 55 Schoene, C.; Bennett, S. P.; Howarth, M. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries. Sci. Rep. 2016, 6, 21151–21162.
- 56 Schoene, C.; Fierer, J. O.; Bennett, S. P.; Howarth, M. SpyTag/SpyCatcher cyclization confers resilience to boiling on a mesophilic enzyme. Angew. Chem. Int. Ed. 2014, 53, 6101–6104.
- 57 Wang, J.; Wang, Y.; Wang, X.; Zhang, D.; Wu, S.; Zhang, G. Enhanced thermal stability of lichenase from Bacillus subtilis 168 by SpyTag/ SpyCatcher-mediated spontaneous cyclization. Biotechnol. Biofuels 2016, 9, 79–87.
- 58 Si, M.; Xu, Q.; Jiang, L.; Huang, H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016, 11, e0162318.
- 59 Wang, Y.; Tian, J.; Xiao, Y.; Wang, Y.; Sun, H.; Chang, Y.; Luo, H. SpyTag/SpyCatcher cyclization enhances the thermostability and organic solvent tolerance of L-phenylalanine aldolase. Biotechnol. Lett. 2019, 41, 987–994.
- 60 Sun, X. B.; Cao, J. W.; Wang, J. K.; Lin, H. Z.; Gao, D. Y.; Qian, G. Y.; Park, Y. D.; Chen, Z. F.; Wang, Q. SpyTag/SpyCatcher molecular cyclization confers protein stability and resilience to aggregation. New Biotechnol. 2019, 49, 28–36.
- 61 Beves, J. E.; Blight, B. A.; Campbell, C. J.; Leigh, D. A.; McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 2011, 50, 9260–9327.
- 62 Gil-Ramirez, G.; Leigh, D. A.; Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 2015, 54, 6110–6150.
- 63 Ashton, P. R.; Goodnow, T. T.; Kaifer, A. E.; Reddington, M. V.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.; Williams, D. J. A [2]Catenane Made to Order. Angew. Chem. Int. Ed. Engl. 1989, 28, 1396–1399.
- 64 Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 2009, 38, 1530–1541.
- 65 Davison, T. S.; Nie, X.; Ma, W.; Lin, Y.; Kay, C.; Benchimol, S.; Arrowsmith, C. H. Structure and functionality of a designed p53 dimer. J. Mol. Biol. 2001, 307, 605–617.
- 66
Yan, L. Z.; Dawson, P. E. Design and Synthesis of a Protein Catenane. Angew. Chem. Int. Ed. 2001, 40, 3625–3627.
10.1002/1521-3773(20011001)40:19<3625::AID-ANIE3625>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 67 Wang, X. W.; Zhang, W. B. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew. Chem. Int. Ed. 2017, 56, 13985–13989.
- 68 Wang, X. W.; Zhang, W. B. Cellular Synthesis of Protein Catenanes. Angew. Chem. Int. Ed. 2016, 55, 3442–3446.
- 69 Liu, D.; Wu, W. H.; Liu, Y. J.; Wu, X. L.; Cao, Y.; Song, B.; Li, X.; Zhang, W. B. Topology Engineering of Proteins in Vivo Using Genetically Encoded, Mechanically Interlocking SpyX Modules for Enhanced Stability. ACS Cent. Sci. 2017, 3, 473–481.
- 70
Da, X. D.; Zhang, W. B. Active Template Synthesis of Protein Heterocatenanes. Angew. Chem. Int. Ed. 2019, 131, 11214–11221.
10.1002/ange.201904943 Google Scholar
- 71 Wang, S. Y.; Thopate, Y. A.; Zhou, Q. Q.; Wang, P. Chemical Protein Synthesis by Native Chemical Ligation and Variations Thereof. Chin. J. Chem. 2019, 37, 1181–1193.
- 72 Siegmund, V.; Piater, B.; Zakeri, B.; Eichhorn, T.; Fischer, F.; Deutsch, C.; Becker, S.; Toleikis, L.; Hock, B.; Betz, U. A.; Kolmar, H. Spontaneous Isopeptide Bond Formation as a Powerful Tool for Engineering Site-Specific Antibody-Drug Conjugates. Sci. Rep. 2016, 6, 39291–39299.
- 73 Wang, F.; Liu, Y.; Yu, Z.; Li, S.; Cheng, Y.; Agard, D. A. General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM. bioRxiv 2019, doi: https://doi.org/10.1101/657411.
- 74 Choi, H.; Lee, J. M.; Jung, Y. Monomeric Covalent-Avidin for Rapid and Covalent Labeling of Quantum Dots to Cell Surface Proteins. Adv. Biosyst. 2019, 3, 1–8.
- 75 Bae, Y.; Kim, G. J.; Kim, H.; Park, S. G.; Jung, H. S.; Kang, S. Engineering Tunable Dual Functional Protein Cage Nanoparticles Using Bacterial Superglue. Biomacromolecules 2018, 19, 2896–2904.
- 76 Hatlem, D.; Trunk, T.; Linke, D.; Leo, J. C. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Int. J. Mol. Sci. 2019, 20, 2129–2147.
- 77 Agerbaek, M. O.; Bang-Christensen, S. R.; Yang, M. H.; Clausen, T. M.; Pereira, M. A.; Sharma, S.; Ditlev, S. B.; Nielsen, M. A.; Choudhary, S.; Gustavsson, T.; Sorensen, P. H.; Meyer, T.; Propper, D.; Shamash, J.; Theander, T. G.; Aicher, A.; Daugaard, M.; Heeschen, C.; Salanti, A. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat. Commun. 2018, 9, 3279–3291.
- 78 Grenier, V.; Daws, B. R.; Liu, P.; Miller, E. W. Spying on Neuronal Membrane Potential with Genetically Targetable Voltage Indicators. J. Am. Chem. Soc. 2019, 141, 1349–1358.
- 79 Ke, X.; Zhang, Y.; Zheng, F.; Liu, Y.; Zheng, Z.; Xu, Y.; Wang, H. SpyCatcher-SpyTag mediated in situ labelling of progeny baculovirus with quantum dots for tracking viral infection in living cells. Chem. Commun. 2018, 54, 1189–1192.
- 80 Min, D.; Jefferson, R. E.; Qi, Y.; Wang, J. Y.; Arbing, M. A.; Im, W.; Bowie, J. U. Unfolding of a ClC chloride transporter retains memory of its evolutionary history. Nat. Chem. Biol. 2018, 14, 489–496.
- 81 Bartsch, T. F.; Hengel, F. E.; Oswald, A.; Dionne, G.; Chipendo, I. V.; Mangat, S. S.; El Shatanofy, M.; Shapiro, L.; Muller, U.; Hudspeth, A. J. Elasticity of individual protocadherin 15 molecules implicates tip links as the gating springs for hearing. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11048–11056.
- 82 Min, D.; Arbing, M. A.; Jefferson, R. E.; Bowie, J. U. A simple DNA handle attachment method for single molecule mechanical manipulation experiments. Protein Sci. 2016, 25, 1535–1544.
- 83 Zhao, Y.; Zhang, Y.; Teng, Y.; Liu, K.; Liu, Y.; Li, W.; Wu, L. SpyCLIP: an easy-to-use and high-throughput compatible CLIP platform for the characterization of protein-RNA interactions with high accuracy. Nucleic Acids Res. 2019, 47, 33–44.
- 84 Khairil Anuar, I. N. A.; Banerjee, A.; Keeble, A. H.; Carella, A.; Nikov, G. I.; Howarth, M. Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat. Commun. 2019, 10, 1734–1746.
- 85 Bedbrook, C. N.; Kato, M.; Ravindra Kumar, S.; Lakshmanan, A.; Nath, R. D.; Sun, F.; Sternberg, P. W.; Arnold, F. H.; Gradinaru, V. Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins in vivo. Chem. Biol. 2015, 22, 1108–1121.
- 86 Donovan, D. A.; Crandall, J. G.; Banks, O. G. B.; Jensvold, Z. D.; Truong, V.; Dinwiddie, D.; McKnight, L. E.; McKnight, J. N. Engineered Chromatin Remodeling Proteins for Precise Nucleosome Positioning. Cell Rep. 2019, 29, 2520–2535.
- 87 Napierski, N. C.; Granger, K.; Langlais, P. R.; Moran, H. R.; Strom, J.; Touma, K.; Harris, S. P. A Novel “Cut and Paste” Method for in situ Replacement of cMyBP-C Reveals a New Role for cMyBP-C in the Regulation of Contractile Oscillations. Circ. Res. 2020, 126, 737–749.
- 88 Alam, M. K.; Gonzalez, C.; Hill, W.; El-Sayed, A.; Fonge, H.; Barreto, K.; Geyer, C. R. Synthetic Modular Antibody Construction by Using the SpyTag/SpyCatcher Protein-Ligase System. ChemBioChem 2017, 18, 2217–2221.
- 89 Alam, M. K.; Brabant, M.; Viswas, R. S.; Barreto, K.; Fonge, H.; Ronald Geyer, C. A novel synthetic trivalent single chain variable fragment (tri-scFv) construction platform based on the SpyTag/SpyCatcher protein ligase system. BMC Biotechnol. 2018, 18, 55–62.
- 90 Liu, Z.; Zhou, H.; Wang, W.; Tan, W.; Fu, Y. X.; Zhu, M. A novel method for synthetic vaccine construction based on protein assembly. Sci. Rep. 2014, 4, 7266–7273.
- 91 Liu, Z.; Zhou, H.; Wang, W.; Fu, Y. X.; Zhu, M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. OncoImmunology 2016, 5, e1147641.
- 92 Brune, K. D.; Leneghan, D. B.; Brian, I. J.; Ishizuka, A. S.; Bachmann, M. F.; Draper, S. J.; Biswas, S.; Howarth, M. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci. Rep. 2016, 6, 19234–19246.
- 93 Brune, K. D.; Buldun, C. M.; Li, Y.; Taylor, I. J.; Brod, F.; Biswas, S.; Howarth, M. Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization. Bioconjugate Chem. 2017, 28, 1544–1551.
- 94 Bruun, T. U. J.; Andersson, A. C.; Draper, S. J.; Howarth, M. Engineering a Rugged Nanoscaffold to Enhance Plug-and-Display Vaccination. ACS Nano 2018, 12, 8855–8866.
- 95 Kim, H.; Choi, H.; Bae, Y.; Kang, S. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue. Biotechnol. Bioeng. 2019, 116, 2843–2851.
- 96 Lim, S.; Jung, G. A.; Glover, D. J.; Clark, D. S. Enhanced Enzyme Activity through Scaffolding on Customizable Self-Assembling Protein Filaments. Small 2019, 15, e1805558.
- 97 Kimura, H.; Asano, R.; Tsukamoto, N.; Tsugawa, W.; Sode, K. Convenient and Universal Fabrication Method for Antibody-Enzyme Complexes as Sensing Elements Using the SpyCatcher/SpyTag System. Anal. Chem. 2018, 90, 14500–14506.
- 98 Xu, L.; Zhang, W. B. The pursuit of precision in macromolecular science: Concepts, trends, and perspectives. Polymer 2018, 155, 235–247.
- 99 Wong, J. X.; Rehm, B. H. A. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018, 19, 4098–4112.
- 100 Ma, W.; Saccardo, A.; Roccatano, D.; Aboagye-Mensah, D.; Alkaseem, M.; Jewkes, M.; Di Nezza, F.; Baron, M.; Soloviev, M.; Ferrari, E. Modular assembly of proteins on nanoparticles. Nat. Commun. 2018, 9, 1489–1497.
- 101 Lin, Y. Q.; Zhang, G. Y. Target-Specific Covalent Immobilization of Enzymes from Cell Lysate on SiO2 Nanoparticles for Biomass Saccharification. ACS Appl. Nano Mater. 2020, 3, 44–48.
- 102 Brizendine, R. K.; Anuganti, M.; Cremo, C. R. Using the SpyTag SpyCatcher system to label smooth muscle myosin II filaments with a quantum dot on the regulatory light chain. Cytoskeleton 2019, 76, 192–199.
- 103 Zhang, G.; Quin, M. B.; Schmidt-Dannert, C. Self-Assembling Protein Scaffold System for Easy in Vitro Coimmobilization of Biocatalytic Cascade Enzymes. ACS Catal. 2018, 8, 5611–5620.
- 104 Jia, L.; Minamihata, K.; Ichinose, H.; Tsumoto, K.; Kamiya, N. Polymeric SpyCatcher Scaffold Enables Bioconjugation in a Ratio-Controllable Manner. Biotechnol. J. 2017, 12, 1–8.
- 105 Yagi, A.; Liu, X.; Abidi, I. H.; Gao, Z.; Park, B. M.; Zeng, X.; Ou, X.; Cagang, A. A.; Zhuang, M.; Hossain, M. D.; Zhang, K.; Weng, L. T.; Sun, F.; Luo, Z. Modular functionalization of crystalline graphene by recombinant proteins: a nanoplatform for probing biomolecules. Nanoscale 2018, 10, 22572–22582.
- 106 Zhang, X. J.; Wang, X. W.; Da, X. D.; Shi, Y.; Liu, C.; Sun, F.; Yang, S.; Zhang, W. B. A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules 2018, 19, 1065–1073.
- 107 Zhang, X. J.; Wang, X. W.; Sun, J. X.; Su, C.; Yang, S.; Zhang, W. B. Synergistic Enhancement of Enzyme Performance and Resilience via Orthogonal Peptide-Protein Chemistry Enabled Multilayer Construction. Biomacromolecules 2018, 19, 2700–2707.
- 108 Choi, H.; Choi, B.; Kim, G. J.; Kim, H. U.; Kim, H.; Jung, H. S.; Kang, S. Fabrication of Nanoreaction Clusters with Dual-Functionalized Protein Cage Nanobuilding Blocks. Small 2018, 14, e1801488.
- 109 Obana, M.; Silverman, B. R.; Tirrell, D. A. Protein-Mediated Colloidal Assembly. J. Am. Chem. Soc. 2017, 139, 14251–14256.
- 110 Manea, F.; Garda, V. G.; Rad, B.; Ajo-Franklin, C. M. Programmable assembly of 2D crystalline protein arrays into covalently stacked 3D bionanomaterials. Biotechnol. Bioeng. 2020, 117, 912–923.
- 111 Tibbitt, M. W.; Rodell, C. B.; Burdick, J. A.; Anseth, K. S. Progress in material design for biomedical applications. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 14444–14451.
- 112 Sun, F.; Zhang, W. B.; Mahdavi, A.; Arnold, F. H.; Tirrell, D. A. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag- SpyCatcher chemistry. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 11269–11274.
- 113 Gao, X.; Fang, J.; Xue, B.; Fu, L.; Li, H. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry. Biomacromolecules 2016, 17, 2812–2819.
- 114 Lim, S.; Jung, G. A.; Muckom, R. J.; Glover, D. J.; Clark, D. S. Engineering bioorthogonal protein-polymer hybrid hydrogel as a functional protein immobilization platform. Chem. Commun. 2019, 55, 806–809.
- 115 Hammer, J. A.; Ruta, A.; Therien, A. M.; West, J. L. Cell-Compatible, Site-Specific Covalent Modification of Hydrogel Scaffolds Enables User-Defined Control over Cell-Material Interactions. Biomacromolecules 2019, 20, 2486–2493.
- 116 Gao, X.; Lyu, S.; Li, H. Decorating a Blank Slate Protein Hydrogel: A General and Robust Approach for Functionalizing Protein Hydrogels. Biomacromolecules 2017, 18, 3726–3732.
- 117 Wieduwild, R.; Howarth, M. Assembling and decorating hyaluronan hydrogels with twin protein superglues to mimic cell-cell interactions. Biomaterials 2018, 180, 253–264.
- 118 Peschke, T.; Bitterwolf, P.; Gallus, S.; Hu, Y.; Oelschlaeger, C.; Willenbacher, N.; Rabe, K. S.; Niemeyer, C. M. Self-Assembling All-Enzyme Hydrogels for Flow Biocatalysis. Angew. Chem. Int. Ed. 2018, 57, 17028–17032.
- 119 Mittmann, E.; Gallus, S.; Bitterwolf, P.; Oelschlaeger, C.; Willenbacher, N.; Miemeyer, C. M.; Rabe, K. S. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology. Micromachines 2019, 10, 795–806.
- 120 Kou, S.; Yang, Z.; Sun, F. Protein Hydrogel Microbeads for Selective Uranium Mining from Seawater. ACS Appl. Mater. Interfaces 2017, 9, 2035–2039.
- 121 Yang, X.; Wei, J.; Wang, Y.; Yang, C.; Zhao, S.; Li, C.; Dong, Y.; Bai, K.; Li, Y.; Teng, H.; Wang, D.; Lyu, N.; Li, J.; Chang, X.; Ning, X.; Ouyang, Q.; Zhang, Y.; Qian, L. A Genetically Encoded Protein Polymer for Uranyl Binding and Extraction Based on the SpyTag-SpyCatcher Chemistry. ACS Synth. Biol. 2018, 7, 2331–2339.
- 122 Kou, S.; Yang, Z.; Luo, J.; Sun, F. Entirely recombinant protein-based hydrogels for selective heavy metal sequestration. Polym. Chem. 2017, 8, 6158–6164.
- 123 Luo, J.; Liu, X.; Yang, Z.; Sun, F. Synthesis of Entirely Protein-Based Hydrogels by Enzymatic Oxidation Enabling Water-Resistant Bioadhesion and Stem Cell Encapsulation. ACS Appl. Bio Mater. 2018, 1, 1735–1740.
- 124 Wang, R.; Yang, Z.; Luo, J.; Hsing, I. M.; Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5912–5917.
- 125
Yang, Z.; Yang, Y.; Wang, M.; Wang, T.; Fok, H. K. F.; Jiang, B.; Xiao, W.; Kou, S.; Guo, Y.; Yan, Y.; Deng, X.; Zhang, W. B.; Sun, F. Dynamically Tunable, Macroscopic Molecular Networks Enabled by Cellular Synthesis of 4-Arm Star-like Proteins. Matter 2020, 2, 233–249.
10.1016/j.matt.2019.09.013 Google Scholar
- 126 Zhou, X. X.; Chung, H. K.; Lam, A. J.; Lin, M. Z. Optical Control of Protein Activity by Fluorescent Protein Domains. Science 2012, 338, 810–814.
- 127 Lyu, S.; Fang, J.; Duan, T.; Fu, L.; Liu, J.; Li, H. Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem. Commun. 2017, 53, 13375–13378.
- 128 Wu, X.; Huang, W.; Wu, W. H.; Xue, B.; Xiang, D.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B.; Cao, Y. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018, 11, 5556–5565.
- 129 DeForest, C. A.; Anseth, K. S. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 421–444.
- 130 Yang, Z.; Kou, S.; Wei, X.; Zhang, F.; Li, F.; Wang, X. W.; Lin, Y.; Wan, C.; Zhang, W. B.; Sun, F. Genetically Programming Stress-Relaxation Behavior in Entirely Protein-Based Molecular Networks. ACS Macro Lett. 2018, 7, 1468–1474.
- 131 Cao, Y.; Wei, X.; Lin, Y.; Sun, F. Synthesis of bio-inspired viscoelastic molecular networks by metal-induced protein assembly. Mol. Syst. Des. Eng. 2020, 5, 117–124.
- 132 Fu, L.; Haage, A.; Kong, N.; Tanentzapf, G.; Li, H. Dynamic protein hydrogels with reversibly tunable stiffness regulate human lung fibroblast spreading reversibly. Chem. Commun. 2019, 55, 5235–5238.
- 133 Aguiño, C. F.; Lang, M.; Fernandez-Luna, V.; Pröschel, M.; Sonnewald, U.; Coto, P. B.; Costa, R. D. Single-Component Biohybrid Light-Emitting Diodes Using a White Emitting Fused Protein. ACS Omega 2018, 3, 15829–15836.
- 134 Monod, J.; Jacob, F. General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation. Cold Spring Harbor Symp. Quant. Biol. 1961, 26, 389–401.
- 135
Zhang, X. E. Synthetic biology in China: Review and prospects. Sci. Sin. Vitae 2019, 49, 1543–1572 (in Chinese).
10.1360/SSV-2019-0299 Google Scholar
- 136 Elowitz, M. B.; Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403, 335–338.
- 137 Kapitein, L. C.; Peterman, E. J.; Kwok, B. H.; Kim, J. H.; Kapoor, T. M.; Schmidt, C. F. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 2005, 435, 114–118.
- 138 Stricker, J.; Cookson, S.; Bennett, M. R.; Mather, W. H.; Tsimring, L. S.; Hasty, J. A fast, robust and tunable synthetic gene oscillator. Nature 2008, 456, 516–519.
- 139 Levskaya, A.; Chevalier, A. A.; Tabor, J. J.; Simpson, Z. B.; Lavery, L. A.; Levy, M.; Davidson, E. A.; Scouras, A.; Ellington, A. D.; Marcotte, E. M.; Voigt, C. A. Synthetic biology: engineering Escherichia coli to see light. Nature 2005, 438, 441–442.
- 140 Fernando, C. T.; Liekens, A. M.; Bingle, L. E.; Beck, C.; Lenser, T.; Stekel, D. J.; Rowe, J. E. Molecular circuits for associative learning in single-celled organisms. J. R. Soc., Interface 2009, 6, 463–469.
- 141 Fritz, G.; Buchler, N. E.; Hwa, T.; Gerland, U. Designing sequential transcription logic: a simple genetic circuit for conditional memory. Syst. Synth. Biol. 2007, 1, 89–98.
- 142 Khalil, A. S.; Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 2010, 11, 367–379.
- 143 Giessen, T. W.; Silver, P. A. A Catalytic Nanoreactor Based on in vivo Encapsulation of Multiple Enzymes in an Engineered Protein Nanocompartment. ChemBioChem 2016, 17, 1931–1935.
- 144 Alves, N. J.; Turner, K. B.; Medintz, I. L.; Walper, S. A. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Sci. Rep. 2016, 6, 24866–24875.
- 145 Alves, N. J.; Turner, K. B.; Daniele, M. A.; Oh, E.; Medintz, I. L.; Walper, S. A. Bacterial Nanobioreactors–Directing Enzyme Packaging into Bacterial Outer Membrane Vesicles. ACS Appl. Mater. Interfaces 2015, 7, 24963–24972.
- 146 Alves, N. J.; Moore, M.; Johnson, B. J.; Dean, S. N.; Turner, K. B.; Medintz, I. L.; Walper, S. A. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. ACS Appl. Mater. Interfaces 2018, 10, 15712–15719.
- 147 Qu, J. L.; Cao, S.; Wei, Q. X.; Zhang, H. W.; Wang, R.; Kang, W.; Ma, T.; Zhang, L.; Liu, T. G.; Au, S. W.; Sun, F.; Xia, J. Synthetic Multienzyme Complexes, Catalytic Nanomachineries for Cascade Biosynthesis in vivo. ACS Nano 2019, 13, 9895–9906.
- 148 Liu, Z. J.; Cao, S.; Liu, M.; Kang, W.; Xia, J. Self-Assembled Multienzyme Nanostructures on Synthetic Protein Scaffolds. ACS Nano 2019, 13, 11343–11352.
- 149 Nguyen, P. Q.; Courchesne, N. D.; Duraj-Thatte, A.; Praveschotinunt, P.; Joshi, N. S. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Adv. Mater. 2018, 30, e1704847.
- 150 Chen, A. Y.; Deng, Z.; Billings, A. N.; Seker, U. O.; Lu, M. Y.; Citorik, R. J.; Zakeri, B.; Lu, T. K. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 2014, 13, 515–523.
- 151 Nguyen, P. Q.; Botyanszki, Z.; Tay, P. K.; Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 2014, 5, 4945–4954.
- 152 Botyanszki, Z.; Tay, P. K.; Nguyen, P. Q.; Nussbaumer, M. G.; Joshi, N. S. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng. 2015, 112, 2016–2024.
- 153 Dorval Courchesne, N.-M.; Duraj-Thatte, A.; Tay, P. K. R.; Nguyen, P. Q.; Joshi, N. S. Scalable Production of Genetically Engineered Nanofibrous Macroscopic Materials via Filtration. ACS Biomater. Sci. Eng. 2016, 3, 733–741.
- 154 Li, Y. F.; Li, K.; Wang, X. Y.; An, B. L.; Cui, M. K.; Pu, J. H.; Wei, S. C.; Xue, S.; Ye, H. F.; Zhao, Y. H.; Liu, M. J.; Wang, Z. K.; Zhong, C. Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. Nano Lett. 2019, 19, 8399–8408.
- 155 Huang, J.; Liu, S.; Zhang, C.; Wang, X.; Pu, J.; Ba, F.; Xue, S.; Ye, H.; Zhao, T.; Li, K.; Wang, Y.; Zhang, J.; Wang, L.; Fan, C.; Lu, T. K.; Zhong, C. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 2019, 15, 34–41.
- 156 Charrier, M.; Li, D.; Mann, V. R.; Yun, L.; Jani, S.; Rad, B.; Cohen, B. E.; Ashby, P. D.; Ryan, K. R.; Ajo-Franklin, C. M. Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials. ACS Synth. Biol. 2019, 8, 181–190.
- 157 Peschke, T.; Rabe, K. S.; Niemeyer, C. M. Orthogonal Surface Tags for Whole-Cell Biocatalysis. Angew. Chem. Int. Ed. 2017, 56, 2183–2186.