Sequential Ir-Catalyzed Allylation/2-aza-Cope Rearrangement Strategy for the Construction of Chiral Homoallylic Amines†
Ruo-Qing Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally to this work.
Search for more papers by this authorChong Shen
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally to this work.
Search for more papers by this authorXiang Cheng
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorZuo-Fei Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorHai-Yan Tao
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Xiu-Qin Dong
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Chun-Jiang Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 230021 China
E-mail: [email protected]; [email protected]Search for more papers by this authorRuo-Qing Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally to this work.
Search for more papers by this authorChong Shen
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
These authors contributed equally to this work.
Search for more papers by this authorXiang Cheng
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorZuo-Fei Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorHai-Yan Tao
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
Search for more papers by this authorCorresponding Author
Xiu-Qin Dong
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Chun-Jiang Wang
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 230021 China
E-mail: [email protected]; [email protected]Search for more papers by this author† Dedicated to the 70th Anniversary of Shanghai Institute of Organic Chemistry.
Summary of main observation and conclusion
Sequential Ir-catalyzed asymmetric allylation/2-aza-Cope rearrangement of arylidene aminomalonates with allylic carbonates was successfully developed, and a variety of enantioenriched homoallylic amine derivatives were obtained in high yields with good chirality transfer and excellent E/Z-geometry control (up to 99% yield, 96% ee). Compared with previous dual catalytic system established for this transformation, the current mono metal catalytic system provides a simpler and more practical protocol employing the readily available starting materials.
Supporting Information
Filename | Description |
---|---|
cjoc202000065-sup-0001-Supinfo.pdfPDF document, 15.5 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Doherty, A. M.; Sircar, I.; Kornberg, B. E.; Quin, J., III; Winters, R. T.; Kaltenbronn, J. S.; Taylor, M. D.; Batley, B. L.; Rapundalo, S. R.; Ryan, M. J.; Painchaud, C. A. Design and Synthesis of Potent, Selective, and Orally Active Fluorine-Containing Renin Inhibitors. J. Med. Chem. 1992, 35, 2–14;
(b) Puentes, C. O.; Kouznetsov, V. Recent Advancements in the Homoallylamine Chemistry. J. Heterocycl. Chem. 2002, 39, 595–614;
(c) Dong, L. M.; Marakovits, J.; Hou, X. J.; Guo, C. X.; Greasley, S.; Dagostino, E.; Ferre, R.; Johnson, M. C.; Kraynov, E.; Thomson, J.; Pathak, V.; Murray, B. W. Structure-based Design of Novel Human Pin1 Inhibitors (II). Bioorg. Med. Chem. Lett. 2010, 20, 2210–2214;
(d) Nugent, T. C. Chiral Amine Synthesis: Methods,
Developments and Applications, Wiley-VCH, Weinheim, Germany, 2010;
10.1002/9783527629541 Google Scholar(e) Guthrie, R. W.; Kaplan, G. L.; Mennona, F. A.; Tilley, J. W.; Kierstead, R. W.; Mulling, J. G.; LeMahieu, R. A.; Zawoiski, S.; O'Donnell, M.; Crowley, H.; Yaremko, B.; Welton, A. F. Pentadienyl carboxamide derivatives as antagonists of platelet activating factor. J. Med. Chem. 1989, 32, 1820–1835; (f) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Catalytic enantioselective formation of C-C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 2011, 111, 2626–2704; (g) Wang, M.; Deng, Y.; Shao, Z. Pd-Catalyzed Asymmetric [3+4] Cycloaddition of Trimethylene-methane: Highly Regio-, Diastereo-, and Enantio-selective Construction of Benzofuro[3,2-b]azepines. Chin. J. Org. Chem. 2020, 40, 812–813; (h) Kumari, P.; Liu, W.; Wang, C.-J.; Dai, J.; Wang, M.-X.; Yang, Q.-Q.; Deng, Y.-H.; Shao, Z. Palladium-Catalyzed Asymmetric [4+3]-Cyclization Reaction of Fused 1-Azadienes with Amino-trimethylenemethanes: Highly Stereoselective Construction of Chiral Fused Azepines. Chin. J. Chem. 2020, 38, 151–157.
- 2(a) Yus, M.; González-Gómez, J. C.; Foubelo, F. Diastereoselective Allylation of Carbonyl Compounds and Imines: Application to the Synthesis of Natural Products. Chem. Rev. 2013, 113, 5595–5698; (b) Yus, M.; González-Gómez, J. C.; Foubelo, F. Catalytic Enantioselective Allylation of Carbonyl Compounds and Imines. Chem. Rev. 2011, 111, 7774–7854; (c) White, J. D.; Hansen, J. D. Total Synthesis of (-)-7-Epicylindrospermopsin, a Toxic Metabolite of the Freshwater Cyanobacterium Aphanizomenon Ovalisporum, and Assignment of Its Absolute Configuration. J. Org. Chem. 2005, 70, 1963–1977; (d) Lathrop, S. P.; Pompeo, M.; Chang, W. T. T.; Movassaghi, M. Convergent and Biomimetic Enantioselective Total Synthesis of (-)-Communesin F. J. Am. Chem. Soc. 2016, 138, 7763–7769.
- 3(a) Schaus, J. V.; Jain, N.; Panek, J. S. Asymmetric Synthesis of Homoallylic Amines and Functionalized Pyrrolidines via Direct Amino-Crotylation of In Situ Generated Imines. Tetrahedron 2000, 56, 10263–10274; (b) Qiao, X. C.; Zhu, S. F.; Chen, W. Q.; Zhou, Q. L. Palladium-Catalyzed Asymmetric Umpolung Allylation of Imines with Allylic Alcohols. Tetrahedron: Asymmetry 2010, 21, 1216–1220; (c) Vilaivan, T.; Winotapan, C.; Banphavichit, V.; Shinada, T.; Ohfune, Y. Indium-Mediated Asymmetric Barbier-Type Allylation of Aldimines in Alcoholic Solvents: Synthesis of Optically Active Homoallylic Amines. J. Org. Chem. 2005, 70, 3464–3471; (d) Huber, J. D.; Leighton, J. L. Highly Enantioselective Imine Cinnamylation with a Remarkable Diastereochemical Switch. J. Am. Chem. Soc. 2007, 129, 14552–14553; (e) Huber, J. D.; Perl, N. R.; Leighton, J. L. Allylsilane-Vinylarene Cross-Metathesis Enables a Powerful Approach to Enantioselective Imine Allylation. Angew. Chem. Int. Ed. 2008, 47, 3037–3039; (f) Liu, M.; Shen, A.; Sun, X. W.; Deng, F.; Xu, M. H.; Lin, G. Q. Dramatic Lithium Chloride Effect on the Reaction Stereocontrol in Zn-mediated Asymmetric Cinnamylation: Highly Practical Synthesis of β-aryl Homoallylic Amines. Chem. Commun. 2010, 46, 8460–8462; (g) Sirvent, J. A.; Foubelo, F.; Yus, M. Diastereoselective indium-mediated allylation of N-tert-butanesulfinyl ketimines: easy access to asymmetric quaternary stereocenters bearing nitrogen atoms. Chem. Commun. 2012, 48, 2543–2545; (h) Guo, T.; Song, R.; Yuan, B. H.; Chen, X. Y.; Sun, X. W.; Lin, G. Q. Highly Efficient Asymmetric Construction of Quaternary Carbon-Containing Homoallylic and Homopropargylic Amines. Chem. Commun. 2013, 49, 5402–5404; (i) Grellepois, F.; Jamaa, A. B.; Rosa, N. S. α-Trifluoromethylated Tertiary Homoallylic Amines: Diastereoselective Synthesis and Conversion Into β-Aminoesters, γ- and δ-Aminoalcohols, Azetidines and Pyrrolidines. Org. Biomol. Chem. 2017, 15, 9696–9709; (j) Berger, R.; Duff, K.; Leighton, J. L. Enantioselective Allylation of Ketone-Derived Benzoylhydrazones: Practical Synthesis of Tertiary Carbinamines. J. Am. Chem. Soc. 2004, 126, 5686–5687; (k) Berger, R.; Rabbat, P. M. A.; Leighton, J. L. Toward a Versatile Allylation Reagent: Practical, Enantioselective Allylation of Acylhydrazones Using Strained Silacycles. J. Am. Chem. Soc. 2003, 125, 9596–9597; (l) Cook, G. R.; Maity, B. C.; Kargbo, R. Highly Diastereoselective Indium-Mediated Allylation of Chiral Hydrazones. Org. Lett. 2004, 6, 1741–1743.
- 4(a) Nakamura, H.; Nakamura, K.; Yamamoto, Y. Catalytic Asymmetric Allylation of Imines via Chiral Bis-π-allylpalladium Complexes. J. Am. Chem. Soc. 1998, 120, 4242–4243;
(b) Gastner, T.; Ishitani, H.; Akiyama, R.; Kobayashi, S. Highly Enantioselective Allylation of Imines with a Chiral Zirconium Catalyst. Angew. Chem. Int. Ed. 2001, 40, 1896–1898;
10.1002/1521-3773(20010518)40:10<1896::AID-ANIE1896>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar(c) Fernandes, R. A.; Yamamoto, Y. Catalytic Asymmetric Carbalkoxyallylation of Imines with the Chiral Bis-π-allylpalladium Complex. J. Org. Chem. 2004, 69, 3562–3564; (d) Fernandes, R. A.; Stimac, A.; Yamamoto, Y. Chiral Bis-π-allylpalladium Complex Catalyzed Asymmetric Allylation of Imines: Enhancement of the Enantioselectivity and Chemical Yield in the Presence of Water. J. Am. Chem. Soc. 2003, 125, 14133–14139; (e) Bao, M.; Nakamura, H.; Yamamoto, Y. Preparation and application of a polymer-supported chiral π-allylpalladium catalyst for the allylation of imines. Tetrahedron Lett. 2000, 41, 131–134; (f) Colombo, F.; Annunziata, R.; Benaglia, M. Catalytic, enantioselective allylation of α-iminoesters promoted by silver(I) complexes of chiral imines. Tetrahedron Lett. 2007, 48, 2687–2690; (g) Aydin, J.; Kumar, K. S.; Sayah, M. J.; Wallner, O. A.; Szabó, K. J. Synthesis and Catalytic Application of Chiral 1,1’-Bi-2-naphthol- and Biphenanthrol-Based Pincer Complexes: Selective Allylation of Sulfonimines with Allyl Stannane and Allyl Trifluoroborate. J. Org. Chem. 2007, 72, 4689–4697.
- 5(a) Morrison, R. J.; Hoveyda, A. H. γ-, Diastereo-, and Enantioselective Addition of MEMO-Substituted Allylboron Compounds to Aldimines Catalyzed by Organoboron-Ammonium Complexes. Angew. Chem. Int. Ed. 2018, 57, 11654–11661; (b) van der Mei, F. W.; Miyamoto, H.; Silverio, D. L.; Hoveyda, A. H. Lewis Acid Catalyzed Borotropic Shifts in the Design of Diastereo- and Enantioselective γ-Additions of Allylboron Moieties to Aldimines. Angew. Chem. Int. Ed. 2016, 55, 4701–4706; (c) Jang, H.; Romiti, F.; Torker, S.; Hoveyda, A. H. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N-H ketimines. Nat. Chem. 2017, 9, 1269–1275; (d) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Simple organic molecules as catalysts for enantioselective synthesis of amines and alcohols. Nature 2013, 494, 216–221; (e) Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. Enantioselective Synthesis of Homoallylic Amines through Reactions of (Pinacolato)allylborons with Aryl-, Heteroaryl-, Alkyl-, or Alkene-Substituted Aldimines Catalyzed by Chiral C1-Symmetric NHC-Cu Complexes. J. Am. Chem. Soc. 2011, 133, 3332–3335.
- 6(a) Sugiura, M.; Hirano, K.; Kobayashi, S. α-Aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines. J. Am. Chem. Soc. 2004, 126, 7182–7183; (b) Yeung, K.; Ruscoe, R. E.; Rae, J.; Pulis, A. P.; Procter, D. J. Enantioselective Generation of Adjacent Stereocenters in a Copper Catalyzed Three- Component Coupling of Imines, Allenes, and Diboranes. Angew. Chem. Int. Ed. 2016, 55, 11912–11916; (c) Wada, R.; Shibuguchi, T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. Catalytic Enantioselective Allylation of Ketoimines. J. Am. Chem. Soc. 2006, 128, 7687–7691; (d) Lou, S.; Moquist, P. N.; Schaus, S. E. Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols. J. Am. Chem. Soc. 2007, 129, 15398–15404; (e) Wu, T. R.; Chong, J. M. Asymmetric Allylboration of Cyclic Imines and Applications to Alkaloid Synthesis. J. Am. Chem. Soc. 2006, 128, 9646–9647; (f) Nakamura, K.; Nakamura, H.; Yamamoto, Y. Chiral π-Allylpalladium-Catalyzed Asymmetric Allylation of Imines: Replacement of Allylstannanes by Allylsilanes. J. Org. Chem. 1999, 64, 2614–2615; (g) Fernandes, R. A.; Yamamoto, Y. The First Catalytic Asymmetric Allylation of Imines with the Tetraallylsilane-TBAF-MeOH System, Using the Chiral Bis-π-allylpalladium Complex. J. Org. Chem. 2004, 69, 735–738; (h) Tan, K. L.; Jacobsen, E. N. Indium-Mediated Asymmetric Allylation of Acylhydrazones Using a Chiral Urea Catalyst. Angew. Chem. Int. Ed. 2007, 46, 1315–1317; (i) Zhang, H.; Gu, Q.; You, S. Recent Advances in Ni-Catalyzed Allylic Substitution Reactions. Chin. J. Org. Chem. 2019, 39, 15–27.
- 7(a) Sugiura, M.; Mori, C.; Kobayashi, S. Enantioselective Transfer Aminoallylation: Synthesis of Optically Active Homoallylic Primary Amines. J. Am. Chem. Soc. 2006, 128, 11038–11039; (b) Rueping, M.; Antonchick, A. P. Catalytic Asymmetric Aminoallylation of Aldehydes: A Catalytic Enantioselective Aza-Cope Rearrangement. Angew. Chem. Int. Ed. 2008, 47, 10090–10093; (c) Ren, H.; Wulff, W. D. Direct Catalytic Asymmetric Aminoallylation of Aldehydes: Synergism of Chiral and Nonchiral Brønsted Acids. J. Am. Chem. Soc. 2011, 133, 5656–5659; (d) Goodman, C. G.; Johnson, J. S. Asymmetric Synthesis of β-Amino Amides by Catalytic Enantioconvergent 2-Aza-Cope Rearrangement. J. Am. Chem. Soc. 2015, 137, 14574–14577; (e) Horowitz, R. M.; Geissman, T. A. A Cleavage Reaction of α-Allylbenzylamines. J. Am. Chem. Soc. 1950, 72, 1518–1522.
- 8(a) Liu, J.; Cao, C. G.; Sun, H. B.; Zhang, X.; Niu, D. W. Catalytic Asymmetric Umpolung Allylation of Imines. J. Am. Chem. Soc. 2016, 138, 13103–13106; (b) Wang, Y.; Deng, L.-F.; Zhang, X.; Niu, D. Catalytic Asymmetric synthesis of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines by Ir-Catalyzed Umpolung Allylation of Imines. Org. Lett. 2019, 21, 6951–6956; (c) Cao, C.-G.; He, B.; Fu, Z.; Niu, D. Synthesis of β3-Amino Esters by Iridium-Catalyzed Asymmetric Allylic Alkylation Reaction. Org. Process Res. Dev. 2019, 23, 1758–1761.
- 9(a) Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Synergistic Catalysis for Cascade Allylation and 2-aza-cope Rearrangement of Azomethine Ylides. Nat. Commun. 2019, 10, 1594–1605; (b) Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Ir/PTC Cooperatively Catalyzed Asymmetric Cascade Allylation/2-aza-Cope Rearrangement: An Efficient Route to Homoallylic Amines from Aldimine Esters. Chin. J. Chem. 2020, 38, 82–86; (c) Shi, L.-M.; Sun, X.-S.; Shen, C.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Catalytic Asymmetric Synthesis of α-Trifluoromethyl Homoallylic Amines via Umpolung Allylation/2-Aza-Cope Rearrangement: Stereoselectivity and Mechanistic Insight. Org. Lett. 2019, 21, 4842–4848; (d) Shen, C.; Wang, R.-Q.; Wei, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Catalytic Asymmetric Umpolung Allylation/2- Aza-Cope Rearrangement for the Construction of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines. Org. Lett. 2019, 21, 6940–6945.
- 10 Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855–1969.
- 11(a) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. Stereodivergent Synthesis of α,α-Disubstituted α-Amino Acids via Synergistic Cu/Ir Catalysis. J. Am. Chem. Soc. 2018, 140, 1508–1513; (b) Huo, X. H.; Zhang, J. C.; Fu, J. K.; He, R.; Zhang, W. B. Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to α,α-Disubstituted α-Amino Acids Bearing Vicinal Stereocenters. J. Am. Chem. Soc. 2018, 140, 2080–2084.
- 12(a) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. Identification of an Activated Catalyst in the Iridium-Catalyzed Allylic Amination and Etherification. Increased Rates, Scope, and Selectivity. J. Am. Chem. Soc. 2003, 125, 14272–14273; (b) Hartwig, J. F.; Stanley, L. M. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution. Acc. Chem. Res. 2010, 43, 1461–1475.
- 13 Teichert, J. F.; Feringa, B. L. Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. Angew. Chem. Int. Ed. 2010, 49, 2486–2528.
- 14 Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Iridium-Catalyzed Allylic Alkylation Reaction with N-Aryl Phosphoramidite Ligands: Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 4812–4821.
- 15 CCDC 1969230 (3ca') contains the supplementary crystallographic data for this paper.
- 16 Zimmerman, H. E.; Traxler, M. D. The Stereochemistry of the Ivanov and Reformatsky Reactions. J. Am. Chem. Soc. 1957, 79, 1920–1923.
- 17 Takano, S.; Iwabuchi, Y.; Ogasawara, K. Concise Stereoselective Synthesis of (2S,4R)-4-Hydroxyproline from (S)-O-Benzylglycidol by a Novel Cyclization. J. Chem. Soc., Chem. Commun. 1988, 1527–1528.