Synthesis and Properties of CF3(OCF3)CH-Substituted Arenes and Alkenes†
Wen-Qi Xu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorXiu-Hua Xu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Feng-Ling Qing
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032 China
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620 China
E-mail: [email protected]Search for more papers by this authorWen-Qi Xu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorXiu-Hua Xu
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Feng-Ling Qing
Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032 China
Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620 China
E-mail: [email protected]Search for more papers by this author†Dedicated to the 70th Anniversary of Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
Summary of main observation and conclusion
A silver-mediated oxidative trifluoromethylation of easily accessible α-trifluoromethyl alcohols with TMSCF3 was developed to access novel CF3(OCF3)CH-containing compounds. Deprotonation of CF3(OCF3)CH-substituted arenes afforded synthetically useful CF3O-substituted gem-difluoroalkenes. Furthermore, evaluation of the lipophilicities (log P) indicated that CH(OCF3)CF3 is more lipophilic than the common fluorinated motifs such as CF3, OCF3, and SCF3, thus rendering the CH(OCF3)CF3 motif appealing in drug discovery.
Supporting Information
Filename | Description |
---|---|
cjoc202000062-sup-0001-Supinfo.pdfPDF document, 1.4 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Purser, S.; Moore, P. R.; Swallow, S. Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330; (b) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. The Fluorous Effect in Biomolecular Applications. Chem. Soc. Rev. 2012, 41, 31–42; (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C. A.; Sorochinsky, E.; Fustero, S. V.; Soloshonok, A.; Liu, H. Fluorine in Pharmaceutical Industry. Chem. Rev. 2014, 114, 2432–2506; (d) Meanwell, N. A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880.
- 2For selected reviews, see: (a) Tomashenko, O. A; Grushin, V. V. Aromatic Trifluoromethylation with Metal Complexes. Chem. Rev. 2011, 111, 4475–4521; (b) Studer, A. A “Renaissance” in Radical Trifluoromethylation. Angew. Chem. Int. Ed. 2012, 51, 8950–8958; (c) Chu, L.; Qing, F.-L. Oxidative Trifluoromethylation and Trifluoromethylthiolation Reactions Using (Trifluoromethyl)trimethylsilane as a Nucleophilic CF3 Source. Acc. Chem. Res. 2014, 47, 1513–1522; (d) Charpentier, J.; Früh, N.; Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent Iodine Reagents. Chem. Rev. 2015, 115, 650–682; (e) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane. Chem. Rev. 2015, 115, 683–730; (f) Alonso, C.; de Marigorta, E. M.; Rubiales, G.; Palacios, F. Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes. Chem. Rev. 2015, 115, 1847–1935.
- 3For selected examples, see: (a) Zhao, Y.; Hu, J. Palladium-Catalyzed 2,2,2-Trifluoroethylation of Organoboronic Acids and Esters. Angew. Chem. Int. Ed. 2012, 51, 1033–1036; (b) Zhang, H.; Chen, P.-H.; Liu, G.-S. Palladium-Catalyzed Cascade C─H Trifluoroethylation of Aryl Iodides and Heck Reaction. Angew. Chem. Int. Ed. 2014, 53, 10174–10178; (c) Luo, H.; Wu, G.; Zhang Y.; Wang, J. Silver(I)-Catalyzed N-Trifluoroethylation of Anilines and O-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angew. Chem. Int. Ed. 2015, 54, 14503–14507; (d) Yu, X.; Cohen, S. M. Photocatalytic Metal–Organic Frameworks for Selective 2,2,2-Trifluoroethylation of Styrenes. J. Am. Chem. Soc. 2016, 138, 12320–12323; (e) Li, L.; Ni, C.; Xie, Q.; Hu, M.; Wang, F.; Hu, J. TMSCF3 as a Convenient Source of CF2=CF2 for Pentafluoroethylation, (Aryloxy)-tetrafluoroethylation, and Tetrafluoroethylation. Angew. Chem. Int. Ed. 2017, 56, 9971–9975; (f) Liu, S.; Huang, Y.; Qing, F.-L.; Xu, X.-H. Transition-Metal-Free Decarboxylation of 3,3,3-Trifluoro-2,2-dimethylpropanoic Acid for the Preparation of C(CF3)Me2-Containing Heteroarenes. Org. Lett. 2018, 20, 5497–5501.
- 4For selected examples, see: (a) Niedermann, K.; Frh, N.; Senn, R.; Czarniecki, B.; Verel, R.; Togni, A. Direct Electrophilic N-Trifluoromethylation of Azoles by a Hypervalent Iodine Reagent. Angew. Chem. Int. Ed. 2012, 51, 6511–6515; (b) Teng, F.; Cheng, J.; Bolm, C. Silver-Mediated N-Trifluoromethylation of Sulfoximines. Org. Lett. 2015, 17, 3166–3169; (c) Scattolin, T.; Deckers K.; Schoenebeck, F. Efficient Synthesis of Trifluoromethyl Amines through a Formal Umpolung Strategy from the Bench-Stable Precursor (Me4N)SCF3. Angew. Chem. Int. Ed. 2017, 56, 221–224; (d) Yu, J.; Lin, J.-H.; Xiao, J.-C. Reaction of Thiocarbonyl Fluoride Generated from Difluorocarbene with Amines. Angew. Chem. Int. Ed. 2017, 56, 16669–16673; (e) van der Werf, A.; Hribersek, M.; Selander, N. N-Trifluoromethylation of Nitrosoarenes with Sodium Triflinate. Org. Lett. 2017, 19, 2374–2377; (f) Scattolin, T.; Bouayad-Gervais, S.; Schoenebeck, F. Straightforward Access to N-Trifluoromethyl Amides, Carbamates, Thiocarbamates and Ureas. Nature 2019, 573, 102–107; (g) Onida, K.; Vanoye, L.; Tlili, A. Direct Synthesis of Thiocarbamoyl Fluorides and Trifluoromethylamines through Fluorinative Desulfurization. Eur. J. Org. Chem. 2019, 6106–6109.
- 5For selected examples, see: (a) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. Silver-Mediated Trifluoromethoxylation of Aryl Stannanes and Arylboronic Acids. J. Am. Chem. Soc. 2011, 133, 13308–13310; (b) Liu, J. B.; Chen, C.; Chu, L.; Chen, Z. H.; Xu, X. H.; Qing, F. L. Silver-Mediated Oxidative Trifluoromethylation of Phenols. Angew. Chem. Int. Ed. 2015, 54, 11839–11842; (c) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Asymmetric Silver-Catalysed Intermolecular Bromotrifluoromethoxylation of Alkenes with a New Trifluoromethoxylation Reagent. Nat. Chem. 2017, 9, 546–551; (d) Jiang, X.; Deng, Z.; Tang, P. Direct Dehydroxytrifluoromethoxylation of Alcohols. Angew. Chem. Int. Ed. 2018, 57, 292–295; (e) Zheng, W.; Morales-Rivera, C. A.; Lee, J, W.; Liu, P.; Ngai, M.-Y. Catalytic C−H Trifluoromethoxylation of Arenes and Heteroarenes. Angew. Chem. Int. Ed. 2018, 57, 9645–9649; (f) Zhou, M.; Ni, C.; Zeng, Y.; Hu, J. Trifluoromethyl Benzoate: A Versatile Trifluoromethoxylation Reagent. J. Am. Chem. Soc. 2018, 140, 6801–6805; for selected reviews, see: (g) Leroux, F. R.; Manteau, B.; Vors, J.-P.; Pazenok, S. Trifluoromethyl Ethers – Synthesis and Properties of an Unusual Substituent. Beilstein J. Org. Chem. 2008, 4, doi:https://doi.org/10.3762/bjoc.4.13; (h) Tlili, A.; Toulgoat, F.; Billard, T. Synthetic Approaches to Trifluoromethoxy-Substituted Compounds. Angew. Chem. Int. Ed. 2016, 55, 11726–11735; (i) Besset, T.; Jubault, P.; Pannecoucke, X.; Poisson, T. New Entries toward the Synthesis of OCF3-Containing Molecules. Org. Chem. Front. 2016, 3, 1004–1010; (j) Lee, K. N.; Lee, J. W.; Ngai, M.-Y. Recent Development of Catalytic Trifluoromethoxylation Reactions. Tetrahedron 2018, 74, 7127–7135; (k) Lee, J. W.; Lee, K. N.; Ngai, M.-Y. Synthesis of Tri- and Difluoromethoxylated Compounds by Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2019, 58, 11171–11181; (l) Hardy, M. A.; Chachignon, H.; Cahard, D. Advances in Asymmetric Di- and Trifluoromethylthiolation, and Di- and Trifluoromethoxylation Reactions. Asian J. Org. Chem. 2019, 8, 591–609; (m) Zhang, X.; Tang, P. Recent Advances in New Trifluoromethoxylation Reagents. Sci. China Chem. 2019, 62, 525–532.
- 6For recent examples, see: (a) Toulgoat, F.; Alazet, S.; Billard, T. Direct Trifluoromethylthiolation Reactions. Eur. J. Org. Chem. 2014, 2415–2428; (b) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Shelf-Stable Electrophilic Reagents for Trifluoromethylthiolation. Acc. Chem. Res. 2015, 48, 1227–1236; (c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Synthetic Methods for Compounds Having CF3–S Units on Carbon by Trifluoromethylation, Trifluoromethylthiolation, Triflylation, and Related Reactions. Chem. Rev. 2015, 115, 731–764; (d) Chachignon, H.; Cahard, D. State-of-the-Art in Electrophilic Trifluoromethylthiolation Reagents. Chin. J. Chem. 2016, 34, 445–454; (e) Barata-Vallejo, S.; Bonesi, S.; Postigo, A. Late Stage Trifluoromethylthiolation Strategies for Organic Compounds. Org. Biomol. Chem. 2016, 14, 7150–7182; (f) Zheng, H.; Huang, Y.; Weng, Z. Recent Advances in Trifluoromethylthiolation Using Nucleophilic Trifluoromethylthiolating Reagents. Tetrahedron Lett. 2016, 57, 1397–1409; (g) Gao, W.; Ding, Q.; Yuan, J.; Mao, X.; Peng, Y. Regioselective Synthesis of SCF3-Substituted 2,4-Diarylquinazoline Using AgSCF3 as Trifluoromethylthiolation Reagent. Chin. J. Chem. 2017, 35, 1717–1725.
- 7For selected examples, see: (a) Chen, C.; Ouyang, L.; Lin, Q.; Liu, Y.; Hou, C.; Yuan, Y.; Weng, Z. Synthesis of CuI Trifluoromethylselenates for Trifluoromethylselenolation of Aryl and Alkyl Halides. Chem. Eur. J. 2014, 20, 657–661; (b) Aufiero, M.; Sperger, T.; Tsang, A. S. K.; Schoenebeck, F. Highly Efficient C-SeCF3 Coupling of Aryl Iodides Enabled by an Air-Stable Dinuclear PdI Catalyst. Angew. Chem. Int. Ed. 2015, 54, 10322–10326; (c) Lefebvre, Q.; Pluta, R.; Rueping, M. Copper Catalyzed Oxidative Coupling Reactions for Trifluoromethylselenolations-Synthesis of R-SeCF3 Compounds Using Air Stable Tetramethylammonium Trifluoromethylselenate. Chem. Commun. 2015, 51, 4394–4397; (d) Matheis, C.; Wagner, V.; Goossen, L. J. Sandmeyer-Type Trifluoromethylthiolation and Trifluoromethylselenolation of (Hetero)Aromatic Amines Catalyzed by Copper. Chem. Eur. J. 2016, 22, 79–82; (e) Dürr, A. B.; Fisher, H. C.; Kalvet, I.; Truong, K.-N.; Schoenebeck, F. Divergent Reactivity of a Dinuclear (NHC)Nickel(I) Catalyst versus Nickel(0) Enables Chemoselective Trifluoromethylselenolation. Angew. Chem. Int. Ed. 2017, 56, 13431–13435; (f) Zhang, B.-S.; Gao, L.-Y.; Zhang, Z.; Wen, Y.-H.; Liang, Y.-M. Three-Component Difluoroalkylation and Trifluoromethylthiolation/trifluoromethylselenolation of π-Bonds. Chem. Commun. 2018, 54, 1185–1188.
- 8(a) Yu, W.; Yang, Y.; Bo, S.; Li, Y.; Chen, S.; Yang, Z.; Zheng, X.; Jiang, Z.-X.; Zhou, X. Design and Synthesis of Fluorinated Dendrimers for Sensitive 19F MRI. J. Org. Chem. 2015, 80, 4443–4449; (b) Domino, K.; Veryser, C.; Wahlqvist, B. A.; Gaardbo, C.; Neumann, K. T.; Daasbjerg, K.; De Borggraeve, W. M.; Skrydstrup, T. Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium-Catalyzed Carbonylation. Angew. Chem. Int. Ed. 2018, 57, 6858–6862; (c) von Berg, S.; Xue, Y.; Collins, M.; Llinas, A.; Olsson, R. I.; Halvarsson, T.; Lindskog, M.; Malmberg, J.; Jirholt, J.; Krutrök, N.; Ramnegård, M. Brännström, M.; Lundqvist, A.; Lepistö, M.; Aagaard, A.; McPheat, J.; Hansson, E. L.; Chen, R.; Xiong, Y.; Hansson, T. G.; Narjes, F. Discovery of Potent and Orally Bioavailable Inverse Agonists of the Retinoic Acid Receptor-Related Orphan Receptor C2. ACS Med. Chem. Lett. 2019, 10, 972–977; (d) Zhao, H.; Zhao, S.; Li, X.; Deng, Y.; Jiang, H.; Zhang, M. Cobalt-Catalyzed Selective Functionalization of Aniline Derivatives with Hexafluoroisopropanol. Org. Lett. 2019, 21, 218–222.
- 9(a) Li, Y.; Wang, X.; Guo, Y.; Zhu, Z.; Wu, Y.; Gong, Y. Direct Heptafluoroisopropylation of Arylboronic Acids via Hexafluoropropene (HFP). Chem. Commun. 2016, 52, 796–799; (b) Wang, X.; Wu, Y. Direct Oxidative Isoperfluoropropylation of Terminal Alkenes via Hexafluoropropylene (HFP) and Silver Fluoride. Chem. Commun. 2018, 54, 1877–1880; (c) Ono, S.; Yokota, Y.; Ito, S.; Mikami, K. Regiocontrolled Heptafluoroisopropylation of Aromatic Halides by Copper(I) Carboxylates with Heptafluoroisopropyl-Zinc Reagents. Org. Lett. 2019, 21, 1093–1097; (d) Tong, C.-L.; Xu, X.-H.; Qing, F.-L. Oxidative Hydro-, Bromo-, and Chloroheptafluoroisopropylation of Unactivated Alkenes with Heptafluoroisopropyl Silver. Org. Lett. 2019, 21, 9532–9535.
- 10(a) Emer, E.; Twilton, J.; Tredwell, M.; Calderwood, S.; Collier, T. L.; Liégault, B.; Taillefer, M.; Gouverneur, V. Diversity-Oriented Approach to CF3CHF-, CF3CFBr-, CF3CF2-, (CF3)2CH-, and CF3(SCF3)CH- Substituted Arenes from 1-(Diazo-2,2,2-trifluoroethyl)arenes. Org. Lett. 2014, 16, 6004–6007; (b) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J. Trifluoromethylthiolation of Diazo Compounds through Copper Carbene Migratory Insertion. Eur. J. Org. Chem. 2014, 3093–3096.
- 11(a) Yang, B.; Xu, X.-H.; Qing, F.-L. Copper-Mediated Radical 1,2-Bis(trifluoromethylation) of Alkenes with Sodium Trifluoromethanesulfinate. Org. Lett. 2015, 17, 1906–1909; (b) Oh, H.; Park, A.; Jeong, K.-S.; Han, S. B.; Lee, H. Copper-Catalyzed 1,2-Bistrifluoromethylation of Terminal Alkenes. Adv. Synth. Catal. 2019, 361, 2136–2140.
- 12 Speers, L.; Szur, A. J.; Terrell, R. C.; Treadwell, J.; Ucciardi, T. U. General Anesthetics. 2. Halogenated Methyl Isopropyl Ethers. J. Med. Chem. 1971, 14, 593–595.
- 13(a) Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Silver-Mediated Oxidative Trifluoromethylation of Alcohols to Alkyl Trifluoromethyl Ethers. Org. Lett. 2015, 17, 5048–5051; (b) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Silver-Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. Angew. Chem. Int. Ed. 2015, 54, 11839–11842; (c) Fu, M.-L.; Xu, X.-H.; Qing, F.-L. Synthesis of Pentafluoroethyl Ethers by Silver-Mediated Oxidative Pentafluoroethylation of Alcohols and Phenols. J. Org. Chem. 2017, 82, 3702–3709.
- 14For a recent work dealing with the synthesis of heterocycles bearing CF(OCF3)CH, see: Schmitt, E.; Bouvet, S.; Pégot, B.; Panossian, A.; Vors, J.-P.; Pazenok, S.; Magnier, E.; Leroux, F. R. Fluoroalkyl Amino Reagents for the Introduction of the Fluoro(trifluoromethoxy)methyl Group onto Arenes and Heterocycles. Org. Lett. 2017, 19, 4960–4963.
- 15(a) Umemoto, T.; Adachi, K.; Ishihara, S. CF3 Oxonium Salts, O-(Trifluoromethyl)dibenzofuranium Salts: In Situ Synthesis, Properties, and Application as a Real CF3+ Species Reagent. J. Org. Chem. 2007, 72, 6905–6917; (b) Koller, R.; Stanek, K.; Stolz, D.; Aardoom, R.; Niedermann, K.; Togni, A. Zinc-Mediated Formation of Trifluoromethyl Ethers from Alcohols and Hypervalent Iodine Trifluoromethylation Reagents. Angew. Chem. Int. Ed. 2009, 48, 4332–4336; (c) Kondo, H.; Maeno, M.; Hirano, K.; Shibata, N. Asymmetric Synthesis of α-Trifluoromethoxy Ketones with a Tetrasubstituted α-Stereogenic Centre via the Palladium-Catalyzed Decarboxylative Allylic Alkylation of Allyl Enol Carbonates. Chem. Commun. 2018, 54, 5522–5525.
- 16For selected examples, see: (a) Gao, B.; Zhao, Y.; Hu, J. AgF-Mediated Fluorinative Cross-Coupling of Two Olefins: Facile Access to α-CF3 Alkenes and β-CF3 Ketones. Angew. Chem. Int. Ed. 2015, 54, 638–642; (b) Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Palladium-Catalyzed Fluoroarylation of gem-Difluoroalkenes. Angew. Chem. Int. Ed. 2017, 56, 9872–9876; (c) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. Nickel-Catalyzed Defluorinative Reductive Cross-Coupling of gem-Difluoroalkenes with Unactivated Secondary and Tertiary Alkyl Halides. J. Am. Chem. Soc. 2017, 139, 12632–12637; (d) Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Fluoro-Hydroxylation of gem-Difluoroalkenes: Synthesis of 18O-labeled α-CF3 Alcohols. Chin. J. Chem. 2018, 36, 1202–1208; (e) Liu, H.; Ge, L.; Wang, D.-X.; Chen, N.; Feng, C. Photoredox-Coupled F-Nucleophilic Addition: Allylation of gem-Difluoroalkenes. Angew. Chem. Int. Ed. 2019, 58, 3918–3922; (f) Liu, J.; Yang, J.; Ferretti, F.; Jackstell, R.; Beller, M. Pd-Catalyzed Selective Carbonylation of gem-Difluoroalkenes: A Practical Synthesis of Difluoromethylated Esters. Angew. Chem. Int. Ed. 2019, 58, 4690–4694; (g) Yoo, W.-J.; Kondo, J.; Rodríguez-Santamaría, J. A.; Nguyen, T. V. Q.; Kobayashi, S. Efficient Synthesis of α-Trifluoromethyl Carboxylic Acids and Esters through Fluorocarboxylation of gem-Difluoroalkenes. Angew. Chem. Int. Ed. 2019, 58, 6772–6775; (h) Song, S.; Liu, H.; Wang, L.; Zhu, C.; Loh, T.-P.; Feng, C. Rhodium-Catalyzed Defluorinative Vinylation of gem-Difluoroalkenes for the Synthesis of 2-Fluoro-1,3-dienes. Chin. J. Chem. 2019, 37, 1036–1040.
- 17(a) Thomson, C. J.; Zhang, Q.; Al-Maharik, N.; Bühl, M.; Cordes, D. B.; Slawin, A. M. Z.; O'Hagan, D. Fluorinated Cyclopropanes: Synthesis and Chemistry of the Aryl α,β,β-trifluorocyclopropane Motif. Chem. Commun. 2018, 54, 8415–8418; (b) Rodil, A.; Bosisio, S.; Ayoup, M. S.; Quinn, L.; Cordes, D. B.; Slawin, A. M. Z.; Murphy, C. D.; Michel, J.; O'Hagan, D. Metabolism and Hydrophilicity of the Polarised ‘Janus Face’ All-cis Tetrafluorocyclohexyl Ring, a Candidate Motif for Drug Discovery. Chem. Sci. 2018, 9, 3023–3028; (c) Tomita, R.; Al-Maharik, N.; Rodil, A.; Bühl, M.; O'Hagan, D. Synthesis of Aryl α,α-Difluoroethyl Thioethers a Novel Structure Motif in Organic Chemistry, and Extending to Aryl α,α-Difluoro Oxyethers. Org. Biomol. Chem. 2018, 16, 1113–1117.
- 18(a) Wang, F.; Xu, P.; Cong, F.; Tang, P. Silver-Mediated Oxidative Functionalization of Alkylsilanes. Chem. Sci. 2018, 9, 8836–8841; (b) Xiang, J.-X.; Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Argentination of Fluoroform: Preparation of a Stable AgCF3 Solution with Diverse Reactivities. Angew. Chem. Int. Ed. 2019, 58, 10320–10324.