Modification of Hole Transport Layers for Fabricating High Performance Non-fullerene Polymer Solar Cells
B. Hari Babu
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ǂThese authors contributed equally to this work.
Search for more papers by this authorChengkun Lyu
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ǂThese authors contributed equally to this work.
Search for more papers by this authorHongwei Zhang
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorZhihao Chen
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorFenghong Li
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Lin Feng
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]Search for more papers by this authorXiao-Tao Hao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorB. Hari Babu
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ǂThese authors contributed equally to this work.
Search for more papers by this authorChengkun Lyu
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ǂThese authors contributed equally to this work.
Search for more papers by this authorHongwei Zhang
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorZhihao Chen
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorFenghong Li
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, 130012 China
Search for more papers by this authorCorresponding Author
Lin Feng
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
E-mail: [email protected]Search for more papers by this authorXiao-Tao Hao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorSummary of main observation and conclusion
Interfacial engineering is expected to be a feasible strategy to improve the charge transport properties of the hole transport layer (HTL), which is of crucial importance to boost the device performance of organic solar cells (OSCs). In this study, two types of alcohol soluble materials, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) and di-tetrabutylammoniumcis–bis(isothiocyanato)bis (2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium(II) (N719) dye were selected as the dopant for HTL. The doping of F4-TCNQ and N719 dye in poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with and without integrating a graphene quantum-dots (G-QDs) layer has been explored in poly[[2,6′-4-8-di(5-ethylhexylthienyl)benzo[1,2-b:3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thio-phenediyl:(2,2′-((2Z,2′Z)-(((4,4,9, 9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (PTB7-Th:IEICO-4F) OSCs. The power conversion efficiency of the non-fullerene OSCs has been increased to 10.12% from 8.84%. The influence of HTL modification on the nano-morphological structures and photophysical properties is analyzed based on the comparative studies performed on the control and modified devices. The use of chemical doping and bilayer strategy optimizes the energy level alignment, nanomorphology, hole mobility, and work-function of HTL, leading to considerable reduction of the leakage current and recombination losses. Our work demonstrates that the doping of HTL and the incorporation of G-QDs layer to constitute a bilayer HTL is an promising strategy to fabricate high performance non-fullerene polymer solar cells
Supporting Information
Filename | Description |
---|---|
cjoc201900462-sup-0001-Supinfo.pdfPDF document, 952.8 KB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Wang, Y.; Wu, B.; Wu, Z.; Lan, Z.; Li, Y.; Zhang, M.; Zhu, F. Origin of Efficient Inverted Nonfullerene Organic Solar Cells: Enhancement of Charge Extraction and Suppression of Bimolecular Recombination Enabled by Augmented Internal Electric Field. J. Phys. Chem. Lett. 2017, 8, 5264–5271.
- 2 Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers. Nat. Commun. 2016, 7, 11287.
- 3 Tsai, M. L.; Tu, W. C.; Tang, L.; Wei, T. C.; Wei, W. R.; Lau, S. P.; Chen, L. J.; He, J. H. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters. Nano Lett. 2016, 16, 309–313.
- 4 Xu, Y.;Yao, H.; Hou, J. Recent Advances in Fullerene-free Polymer Solar Cells: Materials and Devices. Chin. J. Chem. 2019, 37, 207–215.
- 5 Shi, Z.; Liu, H.; Xia, L.; Bai, Y.; Wang, F.; Zhang, B.; Hayat, T.; Alsaedi, A.; Tan, Z. A. Solution-Processed Titanium Chelate Used as Both Electrode Modification Layer and Intermediate Layer for Efficient Inverted Tandem Polymer Solar Cells. Chin. J. Chem. 2018, 36, 194–198.
- 6 Jung, S.; Lee, J.; Seo, J.; Kim, U.; Choi Y.; Park, H. Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes Using Zinc Oxide Nanoparticles. Nano Lett. 2018, 18, 1337–1343.
- 7 Huang, W.; Gann, E.; Cheng, Y. B.; McNeill, C. R. In-Depth Understanding of the Morphology–Performance Relationship in Polymer Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 14026–14034.
- 8 Guillain, F.; Endres, J.; Bourgeois, L.; Kahn, A.; Vignau, L.; Wantz, G. Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 9262–9267.
- 9 Gao, W.; Kahn, A. Controlled p-doping of Zinc Phthalocyanine by Coevaporation with Tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Appl. Phys. Lett. 2001, 79, 4040.
- 10 Gao, W.; Kahn, A. Controlled p Doping of the Hole-transport Molecular Material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′- diamine with Tetrafluorotetracyanoquinodimethane. J. Appl. Phys. 2003, 94, 359–366.
- 11 Tyagi, P.; Dalai, M. K.; Suman, C. K.; Tuli, S.; Srivastava, R. Study of 2,3,5,6-Tetrafluoro-7,7′,8,8′-tetracyano Quinodimethane Diffusion in Organic Light Emitting Diodes Using Secondary Ion Mass Spectroscopy. RSC Adv. 2013, 3, 24553–24559.
- 12 Yang, H. B.; Dong, Y. Q.; Wang, X.; Khoo, S. Y.; Liu, B. Cesium Carbonate Functionalized Graphene Quantum Dots as Stable Electron- Selective Layer for Improvement of Inverted Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 1092–1099.
- 13 Gao, B.; Yao, H.; Hong, L.; Hou, J. Efficient Organic Solar Cells with a High Open-Circuit Voltage of 1.34 V. Chin. J. Chem. 2019, 37, 1153–1157.
- 14 Jang, B.; Lee, C.; Lee, Y. W.; Kim, D.; Uddin, M. A.; Kim, F. S.; Kim, B. J.; Woo, H. W. A High Dielectric N-Type Small Molecular Acceptor Containing Oligoethyleneglycol Side-Chains for Organic Solar Cells. Chin. J. Chem. 2018, 36, 199–205.
- 15 Wei, H. Y.; Huang, J. H.; Hsu, C. Y.; Chang, F. C.; Ho, K. C.; Chu, C. W. Organic Solar Cells Featuring Nanobowl Structures. Energy Environ. Sci. 2013, 6, 1192–1198.
- 16 Hsiao, Y. S.; Whang, W. T.; Chen, C. P.; Chen, Y. C. High-conductivity Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) Film for Use in ITO-free Polymer Solar Cells. J. Mater. Chem. 2008, 18, 5948–5955.
- 17 Cha, H.; Wheeler, S.; Holliday, S.; Dimitrov, S. D.; Wadsworth, A.; Lee, H. H.; Baran, D.; McCulloch, I.; Durrant, J. R. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Adv. Funct. Mater. 2018, 28, 1704389.
- 18 Mengistie, D. A.; Ibrahem, M. A.; Wang, P. C.; Chu, C. W. Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 2292–2299.
- 19 Jönsson, S. K. M.; Brigerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; Denier Van der Gon, A. W.; Salaneck, W. R.; Fahlman, M. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synth. Met. 2003, 139, 1–10.
- 20 Song, X.; Gasparini, N.; Ye, L.; Yao, H.; Hou, J.; Ade, H.; Baran, D. Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells. ACS Energy Lett. 2018, 3, 669–676.
- 21 Zheng, Z.; Hu, Q.; Zhang, S.; Zhang, D.; Wang, J.; Xie, S.; Wang, R.; Qin, Y.; Li, W.; Hong, L.; Liang, N.; Liu, F.; Zhang, Y.; Wei, Z.; Tang, Z.; Russell, T. P.; Hou, J.; Zhou, H. A Highly Efficient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fine-Tuned Hole-Transporting Layer. Adv. Mater. 2018, 30, 1801801.
- 22 Thomas, J. P.; Zhao, L.; McGillivray, D.; Leung, K. T. High-efficiency Hybrid Solar Cells by Nanostructural Modification in PEDOT:PSS with Co-solvent Addition. J. Mater. Chem. A 2014, 2, 2383–2389.
- 23 Crispin, X.; Jakobsson, F. L. E.; Crispin, A.; Grim, P. C. M.; Andersson, P.; Volodin, A.; Haesendonck, C. V.; Auweraer, M. V.; Salaneck, W. R.; Berggren, M. The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes. Chem. Mater. 2006, 18, 4354–4360.
- 24 Yan, Y.; Cai, F.; Yang, L.; Li, W.; Gong, Y.; Cai, J.; Liu, S.; Gurney, R. S.; Liu, D.; Wang, T. Versatile Device Architectures for High-Performing Light-Soaking-Free Inverted Polymer Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 32678–32687.
- 25 Zhang, Z. P.; Zhang, J.; Chen, N.; Qu, Q. T. Graphene quantum Dots: an Emerging Material for Energy-related Applications and Beyond. Energy Environ. Sci. 2012, 5, 8869–8890.
- 26 Thomas, J. P.; Rahman, M. A.; Srivastava, S.; Kang, J. S.; McGillivray, D.; Ellah, M. A.; Heinig, N. F.; Leung, K. T. Highly Conducting Hybrid Silver-Nanowire-Embedded Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) for High-Efficiency Planar Silicon/Organic Heterojunction Solar Cells. ACS Nano 2018, 12, 9495–9503.
- 27 Liu, X.; Zhang, C.; Duan, C.; Li, M.; Hu, Z.; Wang, J.; Liu, F.; Li, N.; Brabec, C. J.; Janssen, R. A. J.; Bazan, G. C.; Huang, F.; Cao, Y. Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. J. Am. Chem. Soc. 2018, 140, 8934–8943.
- 28 Loiudice, A.; Rizzo, A.; Biasiucci, M.; Gigli, G. Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells. J. Phys. Chem. Lett. 2012, 3, 1908–1915.
- 29 Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M. K. Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ Doped PEDOT:PSS Hole Transport Layers. J. Mater. Chem. A 2017, 5, 5701–5708.
- 30 Li, M.; Ni, W.; Kan, B.; Wan, X.; Zhang, L.; Zhang, Q.; Long, G.; Zuo, Y.; Chen, Y. Graphene Quantum Dots as the Hole Transport Layer Material for High-performance Organic Solar Cells. Phys. Chem. Chem. Phys. 2013, 15, 18973–18978.
- 31 Ding, Z.; Hao, Z.; Meng, B.; Xie, Z.; Liu, J.; Da, L. Few-layered Graphene Quantum Dots as Efficient Hole-extraction Layer for High- performance Polymer Solar Cells. Nano Energy 2015, 15, 186–192.
- 32 Park, S.; Cha, M. J.; Seo, J. H.; Heo, J.; Lim, D.; Cho, S. Treating the Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Surface with Hydroquinone Enhances the Performance of Polymer Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 41578–41585.
- 33 Sun, C.; Wu, Z.; Hu, Z.; Xiao, J.; Zhao, W.; Li, H.; Li, Q.; Tsang, S.; Xu, Y.; Zhang, K.; Yip, H.; Hou, J.; Huang, F.; Cao, Y. Interface Design for High-efficiency Non-fullerene Polymer Solar Cells. Energ. Environ. Sci. 2017, 10, 1784–1791.
- 34 Huai, Z.; Wang, L.; Sun, Y.; Fan, R.; Huang, S.; Zhao, X.; Li, X.; Fu, G.; Yang, S. High-Efficiency and Stable Organic Solar Cells Enabled by Dual Cathode Buffer Layers. ACS Appl. Mater. Interfaces 2018, 10, 5682–5692.
- 35 Babu, B. H.; Lv, C.; Yu, C.; Bi, P.; Wen, Z.; Yang, X.; Li, F.; Hao, X. T. Erbium (III) tris(8-hydroxyquinoline) doped zinc oxide interfacial layer for improved performance of polymer solar cells. Org. Electron. 2018, 62, 65–71.
- 36 Babu, B. H.; Lyu, C.; Yu, C.; Wen, Z.; Li, F.; Hao, X. T. Role of Central Metal Ions in 8-Hydroxyquinoline-Doped ZnO Interfacial Layers for Improving the Performance of Polymer Solar Cells. Adv. Mater. Interfaces 2018, 5, 1801172.
- 37 Jao, M. H.; Liao, H. C.; Su, W. F. Achieving a High Fill Factor for Organic Solar Cells. J. Mater. Chem. A 2016, 4, 5784–5801.
- 38 Li, Z.; Liu, C.; Zhang, X.; Guo, J.; Zhang, X.; Guo, W. Boosting Electron Extraction in Polymer Solar Cells by Introducing a N-Type Organic Semiconductor Interface Layer. J. Phys. Chem. C 2018, 122, 207–215.
- 39 Bi, P. Q.; Hao, X. T. Versatile Ternary Approach for Novel Organic Solar Cells: A Review. Solar RRL 2019, 3, 1800263.