Synthesis of Substituted Naphthalenes by 1,4-Palladium Migration Involved Annulation with Internal Alkynes†
Dong Wei
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 China
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorTian-Jiao Hu
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Chen-Guo Feng
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guo-Qiang Lin
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 China
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
E-mail: [email protected]; [email protected]Search for more papers by this authorDong Wei
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 China
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorTian-Jiao Hu
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Chen-Guo Feng
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guo-Qiang Lin
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031 China
Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
E-mail: [email protected]; [email protected]Search for more papers by this authorAbstract
The palladium catalyzed annulation of 1-bromo-2-vinylbenzene derivatives with internal alkynes was realized for the efficient synthesis of substituted naphthalenes. A controllable aryl to vinylic 1,4-palladium migration process is the key for success.
Supporting Information
Filename | Description |
---|---|
cjoc201800169-sup-0001-SuppInfo.pdfPDF document, 5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected examples, see: (a) Ward, R. S. Nat. Prod. Rep. 1999, 16, 75; (b) Apers, S.; Vlietinck, A.; Pieters, L. Phytochem. Rev. 2003, 2, 201; (c) Ding, L.; Fotso, S.; Li, F.; Qin, S.; Laatsch, H. J. Nat. Prod. 2008, 71, 1068; (d) Abdissa, N.; Pan, F.; Gruhonjic, A.; Gräfenstein, J.; Fitzpatrick, P. A.; Landberg, G.; Rissanen, K.; Yenesew, A.; Erdélyi, M. J. Nat. Prod. 2016, 79, 2181.
- 2For selected examples, see: (a) Batt, D. G.; Maynard, G. D.; Petraitis, J. J.; Shaw, J. E.; Galbraith, W.; Harris, R. R. J. Med. Chem. 1990, 33, 360; (b) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293; (c) Yeo, H.; Li, Y.; Fu, L.; Zhu, J. L.; Gullen, E. A.; Dutschman, G. E.; Lee, Y.; Chung, R.; Huang, E. S.; Austin, D. J.; Cheng, Y. C. J. Med. Chem. 2005, 48, 534; (d) Nencetti, S.; Ciccone, L.; Rossello, A.; Nuti, E.; Milanese, C.; Orlandini, E. J. Enzyme Inhib. Med. Chem. 2015, 30, 406.
- 3For selected recent examples, see: (a) Šarlah, D.; Juranovič, A.; Kožar, B.; Rejc, L.; Golobič, A.; Petrič, A. Molecules 2016, 21, 217; (b) Gil, M.; Podkościelna, B.; Gawdzik, B.; Bartnicki, A.; Podkościelny, W.; Demirci, G. Pure Appl. Chem. 2017, 89, 111; (c) Gupta, R. C.; Ali, R.; Razi, S. S.; Srivastava, P.; Dwivedi, S. K.; Misra, A. RSC Adv. 2017, 7, 4941; (d) Li, J.; Zhang, Y.; Chen, Y. M.; Shang, X. F.; Ti, T. Y.; Chen, H. L.; Wang, T. Y.; Zhang, J. L.; Xu, X. F. J. Mol. Recognit. 2018, 31, e2657.
- 4For reviews, see: (a) Bradsher, C. K. Chem. Rev. 1987, 87, 1277; (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901; (c) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron 2003, 59, 7.
- 5 Schore, N. E. Chem. Rev. 1988, 88, 1081.
- 6For selected recent examples, see: (a) Neumeyer, M.; Kopp, J.; Brückner, R. Eur. J. Org. Chem. 2017, 2883; (b) Kanishchev, O. S.; William R. D. Jr. J. Org. Chem. 2016, 81, 11305; (c) Kocsis, L. S.; Kagalwala, H. N.; Mutto, S.; Godugu, B.; Bernhard, S.; Tantillo, D. J.; Brummond, K. M. J. Org. Chem. 2015, 80, 11686.
- 7For selected examples, see: With palladium: (a) Yoshikawa, E.; Yamamoto, Y. Angew. Chem. Int.Ed. 2000, 39, 173;
10.1002/(SICI)1521-3773(20000103)39:1<173::AID-ANIE173>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar(b) Shimizu, M.; Tomioka, Y.; Nagao, I.; Kadowaki, T.; Hiyama, T. Chem. Asian J. 2012, 7, 1644; (c) Feng, C.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 17710; (d) Huang, Q.; Larock, R. C. Org. Lett. 2002, 4, 2505; With rhodium: (e) Zhou, S.; Wang, J.; Wang, L.; Song, C.; Chen, K.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 9384; (f) Xu, Y.; Yang, X.; Zhou, X.; Kong, L.; Li, X. Org. Lett. 2017, 19, 4307 With copper: (g) Lehnherr, D.; Alzola, J. M.; Lobkovsky, E. B.; Dichtel, W. R. Chem. Eur. J. 2015, 21, 18122; (h) Zhang, M.; Ruan, W.; Zhang, H.-J.; Li, W.; Wen, T.-B. J. Org. Chem. 2016, 81, 1696. With other metals: (i) Yan, J.; Tay, G. L.; Neo, C.; Lee, B. R.; Chan, P. W. H. Org. Lett. 2015, 17, 4176;10.1021/acs.orglett.5b01935 Google Scholar(j) Recchi, A. M. S.; Back, D. F.; Zeni, G. J. Org. Chem. 2017, 82, 2713; (k) Liu, H.; Cao, L.; Sun, J.; Fossey, J. S.; Deng, W.-P. Chem. Commun. 2012, 48, 2674; (l) Kang, D.; Kim, J.; Oh, S.; Lee, P. H. Org. Lett. 2012, 14, 5636.
- 8For selected examples, see: (a) Wang, J.-G.; Wang, M.; Xiang, J.-C.; Zhu, Y.-P.; Xue, W.-J.; Wu, A.-X. Org. Lett. 2012, 14, 6060; (b) Ponra, S.; Vitale, M. R.; Michelet, V.; Ratovelomanana-Vidal, V. J. Org. Chem. 2015, 80, 3250; (c) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 1682; (d) Yanai, H.; Ishii, N.; Matsumoto, T. Chem. Commun. 2016, 52, 7974.
- 9For selected examples, see: (a) Viswanathan, G. S.; Wang, M.; Li, C.-J. Angew. Chem. Int. Ed. 2002, 41, 2138;
10.1002/1521-3773(20020617)41:12<2138::AID-ANIE2138>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar(b) Brak, K.; Ellman, J. A. J. Org. Chem. 2010, 75, 3147.
- 10(a) Sakakibara, T.; Tanaka, Y.; Yamasaki, S.-I. Chem. Lett. 1986, 797; (b) Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941; (c) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827; (d) Yasukawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 12680; (e) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2008, 47, 4019; (f) Wu, Y.-T.; Huang, K.-H.; Shin, C.-C.; Wu, T.-C. Chem. Eur. J. 2008, 14, 6697; (g) Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 5198; (h) Ilies, L.; Matsumoto, A.; Kobayashi, M.; Yoshikai, N.; Nakamura, E. Synlett 2012, 2381; (i) Adak, L.; Yoshikai, N. Tetrahedron 2012, 68, 5167; (j) Pham, M. V.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3484; (k) Wang, L.; Yu, Y.; Yang, M.; Kuai, C.; Cai, D.; Yu, J.; Cui, X. Adv. Synth. Catal. 2017, 359, 3818.
- 11 Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536.
- 12For reviews: (a) Ma, S.; Gu, Z. Angew. Chem. Int. Ed. 2005, 44, 7512; (b) Shi, F.; Larock, R. C. Top. Curr. Chem. 2009, 292, 123.
- 13 Hu, T.-J.; Zhang, G.; Chen, Y. H.; Feng, C.-G.; Lin, G.-Q. J. Am. Chem. Soc. 2016, 138, 2897.
- 14 Ramesh, K.; Satyanarayana, G. J. Org. Chem. 2017, 82, 4254.
- 15CCDC 1826017 (3ak) and CCDC 1826018 (3al) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 16(a) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579; (b) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. J. Org. Chem. 1995, 60, 3270; (c) Roesch, K. R.; Larock, R. C. J. Org. Chem. 1998, 63, 5306; (d) Ding, S.; Shi, Z.; Jiao, N. Org. Lett. 2010, 7, 1540.