Asymmetric α-Alkylation of β-Ketocarbonyls via Direct Phenacyl Bromide Photolysis by Chiral Primary Amine†
Wenzhao Zhang
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Search for more papers by this authorYunbo Zhu
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Search for more papers by this authorLong Zhang
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Sanzhong Luo
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorWenzhao Zhang
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Search for more papers by this authorYunbo Zhu
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Search for more papers by this authorLong Zhang
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Sanzhong Luo
Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100490 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorAbstract
Enantioselective α-photoalkylation of β-ketocarbonyls without any external photosensitizer was described in this work. The photoalkylation reactions, enabled solely by a chiral primary amine catalyst, provided convenient constructions of all-carbon quaternary stereocenters with good activity and high enantioselectivity. Mechanism studies revealed a direct photolytic radical chain process under visible light irradiation.
Supporting Information
Filename | Description |
---|---|
cjoc201800125-sup-0001-SuppInfo.pdfPDF document, 8.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see: (a) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075; (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322; (c) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387; (d) Xuan, J.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 6828; (e) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617; (f) Reckenthaler, M.; Griesbeck, A. G. Adv. Synth. Catal. 2013, 355, 2727; (g) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102; (h) Julliard, M.; Chanon, M. Chem. Rev. 1983, 83, 425; (i) Miranda, M. A.; Garcia, H. Chem. Rev. 1994, 94, 1063; (j) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725; (k) Hoffmann, N. J. Photochem. Photobiol., C 2008, 9, 43; (l) Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2009, 38, 1999; (m) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97; (n) Marin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda, M. A. Chem. Rev. 2012, 112, 1710; (o) Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059; (p) Hari, D. P.; König, B. Chem. Commun. 2014, 50, 6688.
- 2For reviews, see: (a) Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179; (b) Meggers, E. Chem. Commun. 2015, 51, 3290; (c) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem. Int. Ed. 2015, 54, 3872; (d) Peña-López, M.; Rosas-Hernández, A.; Beller, M. Angew. Chem. Int. Ed. 2015, 54, 5006; (e) Huo, H.; Meggers, E. CHIMIA 2016, 70, 186.
- 3For selected examples, see: (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77; (b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875; (c) Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600; (d) Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951; (e) Cherevatskaya, M.; Neumann, M.; Füldner, S.; Harlander, C.; Kümmel, S.; Dankesreiter, S.; Pftzner, A.; Zeitler, K.; König, B. Angew. Chem. Int. Ed. 2012, 51, 4062; (f) Riente, P.; Matas Adams, A.; Albero, J.; Palomares, E.; Pericàs, M. A. Angew. Chem. Int. Ed. 2014, 53, 9613; (g) Zhu, Y.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2014, 136, 14642; (h) Welin, E. R.; Warkentin, A. A.; Conrad, J. C.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2015, 54, 9668; (i) Gualandi, A.; Marchini, M.; Mengozzi, L.; Natali, M.; Lucarini, M.; Ceroni, P.; Cozzi, P. G. ACS Catal. 2015, 5, 5927; (j) Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 11521; (k) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750; (l) Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438; (m) Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120; (n) Filippini, G.; Silvi, M.; Melchiorre, P. Angew. Chem. Int. Ed. 2017, 56, 4447; (o) Silvi1, M.; Verrier1, C.; Rey, Y. P.; Buzzetti1, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868.
- 4(a) Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 62;
(b) Doyle, A. G.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2007, 46, 3701;
(c) Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 5604;
(d) Minko, Y.; Pasco, M.; Lercher, L.; Botoshansky, M.; Marek, I. Nature 2012, 490, 522;
(e) Boeckman, R. K.; Boehmler, D. J.; Musselman, R. A. Org. Lett. 2001, 3, 3777;
(f) Arpin, A.; Manthorpe, J. M.; Gleason, J. L. Org. Lett. 2006, 8, 1359;
(g) Li, H. M.; Song, J.; Liu, X. F.; Deng, L. J. Am. Chem. Soc. 2005, 127, 8948;
(h) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119;
(i) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 11240;
(j) Rigby, C. L.; Dixon, D. J. Chem. Commun. 2008, 3798;
10.1039/b805233f Google Scholar(k) Zhang, Z. H.; Dong, X. Q.; Chen, D.; Wang, C. J. Chem.-Eur. J. 2008, 14, 8780.
- 5(a) List, B.; Coric, I.; Grygorenko, O.; Kaib, P.; Komarov, I.; Lee, A.; Leutzsh, M.; Pan, S. C.; Tymtsunik, A. V.; van Gemmeren, M. Angew. Chem. Int. Ed. 2014, 53, 282; (b) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065; (c) Brown, A. R.; Kuo, W. H.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 9286; (d) Lalonde, M. P.; Chen, Y. G.; Jacobson, E. N. Angew. Chem. Int. Ed. 2006, 45, 6366; (e) Ting, Y. F.; Chang, C. L.; Reddy, R. J.; Magar, D. R.; Chen, K. Chem.-Eur. J. 2010, 16, 7030; (f) Zhu, Q.; Lu, Y. X. Chem. Commun. 2010, 46, 2235; (g) Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III Org. Lett. 2004, 6, 2527; (h) Belot, S.; Massaro, A.; Tenti, A.; Mordini, A.; Alexakis, A. Org. Lett. 2008, 10, 4557; (i) Enders, D.; Wang, C.; Bats, J. Angew. Chem. Int. Ed. 2008, 47, 7539.
- 6(a) Xu, C.; Zhang, L.; Luo, S. Angew. Chem. Int. Ed. 2014, 53, 4149; (b) Xu, C.; Zhang, L.; Luo, S. J. Org. Chem. 2014, 79, 11517; (c) Wang, D.; Xu, C.; Zhang, L.; Luo, S. Org. Lett. 2015, 17, 576; (d) Zhou, H.; Zhang, L.; Xu, C.; Luo, S. Angew. Chem. Int. Ed. 2015, 54, 12645; (e) Zhu, Y.; Zhang, W.-Z.; Zhang, L.; Luo, S. Chem.-Eur. J. 2017, 23, 1253; (f) Zhou, H.; Wang, Y.; Zhang, L.; Cai, M.; Luo, S. J. Am. Chem. Soc. 2017, 139, 3631.
- 7 Bahamonde, A.; Melchiorre, P. J. Am. Chem. Soc. 2016, 138, 8019.
- 8Light induced homolysis of phenacyl halides: (a) McGimpsey, W. G.; Scaiano, J. C. Can. J. Chem. 1988, 66, 1474; (b) Renaud, J.; Scaiano, J. C. Can. J. Chem. 1996, 74, 1724; (c) Connolly, T. J.; Baldoví, M. V.; Mohtat, N.; Scaiano, J. C. Tetrahedron Lett. 1996, 37, 4919
- 9 For radical chain mechanism in similar reactions, see: Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426.
- 10Bromoacetoacetonitrile and benzyl bromide have also been examined, showing rather low reactivity with virtually poor enantioselectivity.
- 11 Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed., Pergamon Press, Oxford, 1988.
- 12 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 13 Kalaitzakis, D.; Kambourakis, S.; Rozzell, D. J.; Smonou, I. Tetrahedron: Asymmetry 2007, 18, 2418.
- 14 Kalaitzakis, D.; Rozzell, J. D.; Smonou, I.; Kambourakis, S. Adv. Synth. Catal. 2006, 348, 1958.
- 15 Toda, F.; Suzuki, T.; Higa, S. J. Chem. Soc., Perkin Trans. 1 1998, 3521.
- 16 Rössle, M.; Werner, T.; Frey, W.; Christoffers, J. Eur. J. Org. Chem. 2005, 43, 5031.
- 17 Christoffers, J.; Werner, T.; Frey, W.; Baro, A. Eur. J. Org. Chem. 2003, 4879.