An Environmentally Benign Catalytic Method for Versatile Synthesis of 1,4-Dihydropyridines via Multicomponent Reactions
Corresponding Author
Shuo Cao
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Shuo Cao, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Jie-Ping Wan, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Chengping Wen, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorShanshan Zhong
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Search for more papers by this authorChangfeng Hu
College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorCorresponding Author
Jie-Ping Wan
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Shuo Cao, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Jie-Ping Wan, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Chengping Wen, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorCorresponding Author
Chengping Wen
College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Shuo Cao, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Jie-Ping Wan, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Chengping Wen, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorCorresponding Author
Shuo Cao
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Shuo Cao, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Jie-Ping Wan, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Chengping Wen, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorShanshan Zhong
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Search for more papers by this authorChangfeng Hu
College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorCorresponding Author
Jie-Ping Wan
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Shuo Cao, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Jie-Ping Wan, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Chengping Wen, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorCorresponding Author
Chengping Wen
College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Shuo Cao, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Jie-Ping Wan, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Chengping Wen, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
Search for more papers by this authorAbstract
The synthesis of diverse 1,4-dihydropyridines have been achieved via the multicomponent reactions of aldehydes, enaminones and amines. The reactions have been smoothly performed in water to provide all products with moderate to excellent yields by using lactic acid as a green catalyst.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201500195_sm_suppl.pdf176.8 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a Hilgeroth, A.. Mini-Rev. Med. Chem., 2002, 2, 235.
- 1b Ioan, P.; Carosati, E.; Micucci, M.; Gruciani, G.; Broccatelli, F.; Zhorov, B. S.; Chiarini, A.; Budriesi, R.. Curr. Med. Chem., 2011, 18, 4901.
- 1c Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Gruciani, G.; Zhorov, B. S.; Chiarini, A.; Budriesi, R.. Curr. Med. Chem., 2012, 19, 4306.
- 1d Locatelli, A.; Coscoonati, S.; Micucci, M.; Leoni, A.; Marinelli, L.; Bedini, A.; Ioan, P.; Spampinato, S. M.; Novellino, E.; Chiarini, A.; Budriesi, R.. J. Med. Chem., 2013, 56, 3866.
- 1e Reimão, J. Q.; Scotti, M. T.; Tempone, A. G.. Bioorg. Med. Chem., 2010, 18, 8044.
- 1f Sun, C.; Chen, Y.; Liu, T.; Wu, Y.; Fang, T.; Wang, J.; Xing, J.. Chin. J. Chem., 2012, 30, 1415.
- 2a Rudler, H.; Parlier, A.; Hamon, L.; Herson, P.; Daran, J.-C.. Chem. Commun., 2008, 4150.
- 2b Rudler, H.; Parlier, A.; Sandoval-Chavez, C.; Herson, P.; Daran, J.-C.. Angew. Chem., Int. Ed., 2008, 47, 6843.
- 2c Schmaunz, C. E.; Mayer, P.; Wanner, K. T.. Synthesis, 2014, 46, 1630.
- 3For reviews and some recent examples, see:
- 3a Stout, D. M.; Meyers, A. I.. Chem. Rev., 1982, 82, 223.
- 3b Wan, J.-P.; Liu, Y.. RSC Adv., 2012, 2, 9763.
- 3c Wan, J.; Zhou, Y.; Liu, Y.; Fang, Z.; Wen, C.. Chin. J. Chem., 2014, 32, 219.
- 3d Ghalem, W.; Boulcina, R.; Decache, A.. Chin. J. Chem., 2012, 30, 733.
- 3e Kumar, R.; Andhare, N. H.; Shard, A.; Richa; Sinha, A. K.. RSC Adv., 2014, 4, 19111.
- 3f Nakaike, Y.; Nishiwaki, N.; Tobe, Y.. J. Org. Chem., 2014, 79, 2163.
- 3g Liu, Y.-P.; Liu, J.-M.; Wang, X.; Cheng, T.-M.; Li, R.-T.. Tetrahedron, 2013, 69, 5242.
- 3h Wan, J. P.; Liu, Y. Y.. RSC Adv., 2013, 3, 2477.
- 3i Yang, J.; Wang, C.; Xie, X.; Li, H.; Li, Y.. Eur. J. Org. Chem., 2010, 4189.
- 4For recent examples, see
- 4a Wan, J.-P.; Lin, Y.; Jing, Y.; Xu, M.; Liu, Y.. Tetrahedron, 2014, 70, 7874.
- 4b Nakaike, Y.; Nishiwaki, N.; Ariga, M.; Tobe, Y.. J. Org. Chem., 2014, 79, 2163.
- 4c Han, C.; Meng, W.; Liu, H.; Liu, Y.; Tao, J.. Tetrahedron, 2014, 70, 8768.
- 4d Rao, H. S.; Parthiban, A.. Org. Biomol. Chem., 2014, 12, 6223.
- 4e Islam, K.; Das, D. K.; Khan, A. T.. Tetrahedron Lett., 2014, 55, 5613.
- 4f Liu, L.; Sarkisian, R.; Deng, Y.; Wang, H.. J. Org. Chem., 2013, 78, 5751.
- 4g Balalaie, S.; Baoosi, L.; Tahoori, F.; Rominger, F.; Bijanzadeh, H. R.. Tetrahedron, 2013, 69, 738.
- 4h Gati, W.; Rammah, M. M.; Rammah, M. B.; Couty, F.; Evano, G.. J. Am. Chem. Soc., 2012, 134, 9078.
- 4i Kiruthika, S. E.; Lakshmi, N. V.; Banu, B. R.; Perumal, P. T.. Tetrahedron Lett., 2011, 52, 6508.
- 4j Sridharan, V.; Perumal, P. T.; Avendaño, C.; Menéndez, J. C.. Tetrahedron, 2007, 63, 4407.
- 4k Sun, J.; Shen, G.; Xie, Y.; Yan, C.. Chin. J. Chem., 2014, 32, 1143.
- 5a Minakata, S.; Komatsu, M.. Chem. Rev., 2009, 109, 711.
- 5b Gawande, M. B.; Bonifácio, V. D. B.; Luque, R.; Branco, P. S.; Varma, R. S.. Chem. Soc. Rev., 2013, 42, 5522.
- 5c Li, B.; Dixneuf, P. H.. Chem. Soc. Rev., 2013, 42, 5744.
- 5d Zuo, Y.-J.; Qu, J.. J. Org. Chem., 2014, 79, 6832.
- 5e Li, P.-F.; Wang, H.-L.; Qu, J.. J. Org. Chem., 2014, 79, 3955.
- 5f Zhang, M.-Z.; Sheng, W.-B.; Jiang, Q.; Tian, M.; Yin, Y.; Guo, C.-C.. J. Org. Chem., 2014, 79, 10829.
- 5g Cao, J.-L.; Shen, S.-L.; Yang, P.; Qu, J.. Org. Lett., 2013, 15, 3856.
- 5h Wan, J.-P.; Gan, S.-F.; Wu, J.-M.; Pan, Y.-J.. Green Chem., 2009, 11, 1633.
- 6a Dalko, P. I.; Moisan, L.. Angew. Chem., Int. Ed., 2004, 43, 5138.
- 6b Enders, D.; Niemeier, O.; Henseler, A.. Chem. Rev., 2007, 107, 5606.
- 6c MacMilllan, D. W. C.. Nature, 2008, 455, 304.
- 6d Schreiner, P. R.. Chem. Soc. Rev., 2003, 322, 289.
- 6e Renzi, P.; Bella, M.. Chem. Commun., 2012, 48, 6881.
- 6f Jiang, D.; Pan, X.; Li, M.; Gu, Y.. ACS Comb. Sci., 2014, 16, 287.
- 6g Li, M.; Taheri, A.; Liu, M.; Sun, S.; Gu, Y.. Adv. Synth. Catal., 2014, 356, 537.
- 7a Yang, J.; Tan, J.-N.; Gu, Y.. Green Chem., 2012, 14, 3304.
- 7b Wan, J.-P.; Lin, Y.; Hu, K.; Liu, Y.. RSC Adv., 2014, 4, 20499.
- 7c Yan, B.; Tao, L.-Z.; Liang, Y.; Xu, B.-Q.. ChemSucChem, 2014, 7, 1568.
- 7d Ghantani, V.; Lomate, S. T.; Dongare, M. K.; Umbarkar, S. B.. Green Chem., 2013, 15, 1211.
- 7e Serrano-Ruiz, J. C.; Dumesic, J. A.. Green Chem., 2009, 11, 1101.
- 8a Wan, J.-P.; Liu, Y.. Synthesis, 2010, 3943.
- 8b Liu, Y.; Wang, H.; Wan, J.-P.. Asian J. Org. Chem., 2013, 2, 374.
- 8c Wan, J.-P.; Liu, Y.. Curr. Org. Chem., 2011, 15, 2758.
- 8d Wan, J.-P.; Lin, Y.; Liu, Y.. Curr. Org. Chem., 2014, 18, 687.
- 8e Wan, J.-P.; Wang, H.; Liu, Y.; Ding, H.. Org. Lett., 2014, 16, 5160.
- 8f Wan, J.-P.; Lin, Y.; Huang, Q.; Liu, Y.. J. Org. Chem., 2014, 79, 7232.
- 8g Wan, J.-P.; Zhou, Y.; Jiang, K.; Ye, H.. Synthesis, 2014, 46, 3256.
- 9a Wan, J.-P.; Wang, C.; Zhou, R.; Liu, Y.. RSC Adv., 2012, 2, 8789.
- 9b Liu, Y.; Wang, H.; Wang, C.; Wan, J.-P.; Wen, C.. RSC Adv., 2013, 3, 21369.
- 9c Liu, Y.; Zhou, R.; Wan, J.-P.. Synth. Commun., 2013, 43, 2475.
- 9d Wan, J.-P.; Cao, S.; Jiang, Y.. Appl. Organometal. Chem., 2014, 28, 631.
- 10For recent examples on multicomponent synthesis of heterocycles, see:
- 10a Li, M.; Li, T.; Zhao, K.; Wang, M.; Wen, L.. Chin. J. Chem., 2013, 31, 1033.
- 10b Chen, Z.; Bi, J.; Su, W.. Chin. J. Chem., 2013, 31, 507.
- 10c Li, Y.; Xu, H.; Fu, L.; Shi, Q.; Jiang, B.; Tu, S.. Chin. J. Chem., 2013, 31, 737.
- 11a Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V. S.; Rao, Y. K.. J. Mol. Catal. A: Chem., 2006, 247, 233.
- 11b Jin, T.-S.; Zhang, J.-S.; Guo, T.-T.; Wang, A.-Q.; Li, T.-S.. Synthesis, 2004, 12, 2001.
- 11c Wang, X.-S.; Zhang, M.-M.; Jiang, H.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M.. Synthesis, 2006, 24, 4187.
- 11d Shen, W.; Wang, L.-M.; Tian, H.; Tang, J.; Yu, J. J.; Wang, M. L.. J. Fluorine Chem., 2009, 130, 522.
- 11e El-Sabbagh, O. I.; Shabaan, M. A.; Kadry, H. H.; Al-Din, E. S.. Arch. Pharm. Chem. Life Sci., 2010, 9, 519.