Benzimidazole-Linked Porous Polymers: Synthesis and Gas Sorption Properties
Yi Cui
National Center for Nanoscience and Technology, Beijing 100190, China
Search for more papers by this authorYanchao Zhao
National Center for Nanoscience and Technology, Beijing 100190, China
Search for more papers by this authorTao Wang
National Center for Nanoscience and Technology, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Baohang Han
National Center for Nanoscience and Technology, Beijing 100190, China
National Center for Nanoscience and Technology, Beijing 100190, China, Tel.: 0086-010-82545576Search for more papers by this authorYi Cui
National Center for Nanoscience and Technology, Beijing 100190, China
Search for more papers by this authorYanchao Zhao
National Center for Nanoscience and Technology, Beijing 100190, China
Search for more papers by this authorTao Wang
National Center for Nanoscience and Technology, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Baohang Han
National Center for Nanoscience and Technology, Beijing 100190, China
National Center for Nanoscience and Technology, Beijing 100190, China, Tel.: 0086-010-82545576Search for more papers by this authorAbstract
A series of benzimidazole-linked porous polymers are obtained by the condensation reaction between the o-aminobenzol end groups of building blocks (2,3,6,7,10,11-hexaaminotriphenylene, 3,3′-diaminobenzidine or 1,2,4,5-benzenetetraamine) and the aldehyde groups of building blocks [terephthalicaldehyde, 4,4′-biphenyldicarboxaldehyde, 1,3,5-tris(4-acetylphenyl)benzene or 1,3,5-tris(4-formylbiphenyl)amine] in one-pot synthesis without employing any catalyst or template. The existence of the imidazole ring in the obtained polymers could be identified by Fourier transform infrared and solid-state 13C CP/MAS NMR spectroscopy. The sphere-shaped morphology of the obtained polymers is observed through scanning electron microscopy. The polymers possess Brunauer-Emmett-Teller specific surface area values over 600 m2·g−1, showing hydrogen storage (up to 1.6 wt%, at 77 K and 1×105 Pa) and carbon dioxide capture (up to 12.6 wt%, at 273 K and 1×105 Pa) properties. Such polymers would possess good performance in the applications of gas storage and separation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201400494_sm_suppl.pdf104.5 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Kitagawa, S.; Kitaura, R.; Noro, S.. Angew. Chem., Int. Ed., 2004, 43, 2334.
- 2 Wood, C. D.; Tan, B.; Trewin, A.; Niu, H.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel, E.; Cooper, A. I.. Chem. Mater., 2007, 19, 2034.
- 3 Rose, M.; Bohlmann, W.; Sabo, M.; Kaskel, S.. Chem. Commun., 2008, 2462.
- 4 Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M.. Science, 2005, 310, 1166.
- 5 Murray, L. J.; Dinca, M.; Long, J. R.. Chem. Soc. Rev., 2009, 38, 1294.
- 6 McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D.. Chem. Eur. J., 2005, 11, 2610.
- 7 McKeown, N. B.; Budd, P. M.. Chem. Soc. Rev., 2006, 35, 675.
- 8 Holst, J. R.; Cooper, A. I.. Adv. Mater., 2010, 22, 5212.
- 9 Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. J.. Mater. Chem., 2007, 17, 3827.
- 10 Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I.. Science, 2005, 309, 2040.
- 11 Lee, J.-Y.; Wood, C. D.; Bradshaw, D.; Rosseinsky, M. J.; Cooper, A. I.. Chem. Commun., 2006, 2670.
- 12 Song, J.; Huang, Z.; Zheng, Q.. Chin. J. Chem., 2013, 31, 577.
- 13 Wang, Y.; Zhao, Y.; Han, B.. Chin. J. Chem., 2013, 31, 657.
- 14 Rao, A. B.; Rubin, E. S.. Environ. Sci. Technol., 2002, 36, 4467.
- 15 Neuse, E. W.; Loonat, M. S.. Macromolecules, 1983, 16, 128.
- 16 Ueda, M.; Sato, M.; Mochizuki, A.. Macromolecules, 1985, 18, 2723.
- 17 Rabbani, M. G.; El-Kaderi, H. M.. Chem. Mater., 2011, 23, 1650.
- 18 Rabbani, M. G.; El-Kaderi, H. M.. Chem. Mater., 2012, 24, 1511.
- 19 Zhao, Y.-C.; Cheng, Q.-Y.; Zhou, D.; Wang, T.; Han, B.-H.. J. Mater. Chem., 2012, 22, 11509.
- 20 Zhang, X. J.; Bian, N.; Mao, L.-J.; Chen, Q.; Fang, L.; Qi, A.-D.; Han, B.-H.. Macromol. Chem. Phys., 2012, 213, 1575.
- 21 Rabbani, M. G.; Reich, T. E.; Kassab, R. M.; Jackson, K. T.; El-Kaderi, H. M.. Chem. Commun., 2012, 48, 1141.
- 22 Rabbani, M. G.; Sekizkardes, A. K.; El-Kadri, O. M.; Kaafarani, B. R.; El-Kaderi, H. M.. J. Mater. Chem., 2012, 22, 25409.
- 23 Yu, H.; Tian, M.; Shen, C.; Wang, Z.. Polym. Chem., 2013, 4, 961.
- 24 Altarawneh, S.; Behera, S.; Jena, P.; El-Kaderi, H. M.. Chem. Commun., 2014, 50, 3571.
- 25 Sekizkardes, A. K.; Islamoglu, T.; Kahveci, Z.; El-Kaderi, H. M.. J. Mater. Chem. A, 2014, 2, 12492.
- 26 Chen, L.; Kim, J.; Ishizuka, T.; Honsho, Y.; Saeki, A.; Seki, S.; Ihee, H.; Jiang, D. L.. J. Am. Chem. Soc., 2009, 131, 7287.
- 27 Xia, H.; He, J.; Peng, P.; Zhou, Y.; Li, Y.; Tian, W.. Tetrahedron Lett., 2007, 48, 5877.
- 28 Littke, A. F.; Dai, C. Y.; Fu, G. C.. J. Am. Chem. Soc., 2000, 122, 4020.
- 29 Adachi, T.; Tong, L.; Kuwabara, J.; Kanbara, T.; Saeki, A.; Seki, S.; Yamamoto, Y.. J. Am. Chem. Soc., 2012, 135, 870.
- 30 Morsy, M. A.; Al-Khaldi, M. A.; Suwaiyan, A.. J. Phys. Chem. A, 2002, 106, 9196.
- 31 Jiang, J.-X.; Trewin, A.; Su, F.; Wood, C. D.; Niu, H.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.. Macromolecules, 2009, 42, 2658.
- 32 Jiang, J.-X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I.. Angew. Chem., Int. Ed., 2007, 46, 8574.
- 33 Zhao, Y.-C.; Wang, T.; Zhang, L.-M.; Cui, Y.; Han, B.-H.. ACS Appl. Mater. Interfaces, 2012, 4, 6975.
- 34 Germain, J.; Fréchet, J. M. J.; Svec, F.. Small, 2009, 5, 1098.
- 35 Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness, N. R.; Schröder, M.. J. Am. Chem. Soc., 2009, 131, 2159.
- 36 Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G.. Proc. Natl. Acad. Sci., 2005, 102, 10439.
- 37 Panda, T.; Pachfule, P.; Chen, Y.; Jiangb, J.; Banerjee, R.. Chem. Commun., 2011, 47, 2011.
- 38 Ma, S. Q.; Zhou, H.-C.. Chem. Commun., 2010, 46, 44.