Catalytic Mechanism of Cytochrome P450 2D6 for 4-Hydroxylation of Aripiprazole: A QM/MM Study
Rongwei Shi
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorWeihua Li
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorGuixia Liu
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Yun Tang
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Tel.: 0086-021-64251052Search for more papers by this authorRongwei Shi
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorWeihua Li
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorGuixia Liu
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Yun Tang
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Tel.: 0086-021-64251052Search for more papers by this authorAbstract
Drug metabolism is an important issue in drug discovery. Understanding how a drug is metabolized in the body will provide helpful information for lead optimization. Cytochrome P450 2D6 (CYP2D6) is a key enzyme for drug metabolism and responsible for the metabolism of about one third marketed drugs. Aripiprazole is an atypical antipsychotic and metabolized by CYP2D6 to its hydroxylated form. In this study, a series of computational methods were performed to understand how CYP2D6 accomplishes the 4-hydroxylation of aripiprazole. Molecular docking and molecular dynamics simulations were first performed to prepare the initial conformations for QM/MM calculations. The results revealed two possible conformations for the drug-CYP2D6 complex. The ONIOM method for QM/MM calculations was then carried out to show detailed reaction pathways for the CYP2D6-catalyzed aripiprazole hydroxylation reaction, which demonstrated that the dominant reactive channel was electrophilic and involved an initial attack on the π-system of the dichlorophenyl group of aripiprazole to produce cation δ-complex. Furthermore, the product complex for each conformation was thermodynamically stable, which is in good agreement with previous reports.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201300427_sm_suppl.pdf822.2 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I.. Chem. Rev., 2005, 105, 2253.
- 2 Guengerich, F. P.. FASEB J., 1992, 6, 745.
- 3 Rendic, S.. Drug Metab. Rev., 2002, 34, 83.
- 4 Zanger, U. M.; Raimundo, S.; Eichelbaum, M.. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 369, 23.
- 5 Guengerichrich, F. P.. In Cytochrome P450: Structure, Mechanisms, and Biochemistry, 2nd ed., Ed.: Ortiz de Montellano, P. R., Plenum Press, New York, 1995.
- 6 Evans, W. E.; Relling, M. V.. Science, 1999, 286, 487.
- 7 Lawler, C. P.; Prioleau, C.; Lewis, M. M.; Msk, C.; Jiang, D.; Schetz, J. A.; Gonzalez, A. M.; Sibley, D. R.; Mailman, R. B.. Neuropsychopharmacology, 1999, 20, 612.
- 8 Bauman, J. N.; Frederick, K. S.; Sawant, A.; Walsky, R. L.; Cox, L. M.; Obach, R. S.; Kalgutkar, A. S.. Drug. Metab. Dispos., 2008, 36, 1016.
- 9 Caccia, S.. Curr. Drug Metab., 2007, 8, 612.
- 10 Morita, S.; Kitamo, K.; Matsubara, J.; Ohtani, T.; Kawano, Y.; Otsubo, K.; Uchida, M.. Tetrahedron, 1998, 54, 4811.
- 11 Schöneboom, J. C.; Lin, H.; Reuter, N.; Thiel, W.; Cohen, S.; Ogliaro, F.; Shaik, S.. J. Am. Chem. Soc., 2002, 124, 8142.
- 12 Zheng, J. J.; Altun, A.; Thiel, W.. J. Comput. Chem., 2007, 28, 2147.
- 13 Cohen, S.; Kozuch, S.; Hazan, C.; Shaik, S.. J. Am. Chem. Soc., 2006, 128, 11028.
- 14 Oláh, J.; Mulholland, A. J.; Harvey, J. N.. Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 6050.
- 15 Schyman, P.; Lai, W. Z.; Chen, H.; Wang, Y.; Shaik, S.. J. Am. Chem. Soc., 2011, 133, 7977.
- 16 Lee, C.; Yang, W.; Parr, R. G.. Phys. Rev. B, 1988, 37, 785.
- 17 Becke, A. D.. J. Chem. Phys., 1993, 98, 5648.
- 18 Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.. J. Phys. Chem., 1994, 98, 11623.
- 19 Case, D. A.; Cheatham, T. A.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Bronzell, S. R.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Kollman, P. A., Amber10, University of California, San Francisco, San Francisco, CA, 2008.
- 20 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, revision B.01, Gaussian, Inc., Wallingford, CT, 2009.
- 21 Wang, A.; Savas, U.; Hsu, M. H.; Stout, C. D.; Johnson, E. F.. J. Biol. Chem., 2012, 287, 10834.
- 22
Morris, G. M.;
Goodsell, D. S.;
Halliday, R. S.;
Huey, R.;
Hart, W. E.;
Belew, R. K.;
Olson, A. J..
J. Comput. Chem.,
1998,
19,
1639.
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CAS Web of Science® Google Scholar
- 23 Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P.. J. Comput. Chem., 2003, 24, 1999.
- 24 Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A.. J. Am. Chem. Soc., 1995, 117, 5179.
- 25 Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A.. J. Comput. Chem., 2004, 25, 1157.
- 26 Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C.. J. Comput. Phys., 1977, 23, 327.
- 27 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.. J. Chem. Phys., 1984, 81, 3684.
- 28 Marti, M. A.; Crespo, A.; Capece, L.; Boechi, L.; Bikiel, D. E.; Scherlis, D. A.; Estrin, D. A.. J. Inorg. Biochem., 2006, 100, 761.
- 29 Capece, L.; Marti, M. A.; Crespo, A.; Doctorovich, F.; Estrin, D. A.. J. Am. Chem. Soc., 2006, 128, 12455.
- 30 Marti, M. A.; Capece, L.; Crespo, A.; Doctorovich, F.; Estrin, D. A.. J. Am. Chem. Soc., 2005, 127, 7721.
- 31 Maseras, F.; Morokuma, K.. J. Comput. Chem., 1995, 16, 1170.
- 32 Dapprich, S.; Komaáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J.. J. Mol. Struct. (THEOCHEM), 1999, 461–462, 1.
- 33 Vreven, T.; Byun, K. S.; Komaáromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch, M. J.. J. Chem. Theory. Comput., 2006, 2, 815.
- 34 Singh, U. C.; Kollman, P. A.. J. Comput. Chem., 1986, 7, 718.
- 35 Field, M. J.; Bash, P. A.; Karplus, M.. J. Comput. Chem., 1990, 11, 700.
- 36 Hritz, J.; de Ruiter, A.; Oostenbrink, C.. J. Med. Chem., 2008, 51, 7469.
- 37 Saraceno, M.; Coi, A.; Bianucci, A. M.. Int. J. Biol. Macromol., 2008, 42, 362.
- 38 Moors, S. L. C.; Vos, A. M.; Ceulemans, A.. J. Med. Chem., 2011, 54, 6098.
- 39 Keizers, P. H.; Schraven, L. H.; de Graaf, C.; Hidestrand, M.; Ingelman-Sundberg, M.; van Dijk, B. R.; Vermeulen, N. P.; Commandeur, J. N.. Biochem. Biophys. Res. Commun., 2005, 338, 1065.
- 40 Groves, J. T.; McClusky, G. A.. J. Am. Chem. Soc., 1976, 98, 859.
- 41 de Visser, S. P.; Shaik, S.. J. Am. Chem. Soc., 2003, 125, 7413.
- 42 Schyman, P.; Usharani, D.; Wang, Y.; Shaik, S.. J. Phys. Chem. B, 2010, 114, 7078.
- 43 Lonsdale, R.; Oláh, J.; Mulholland, A. J.; Harvey, J. N.. J. Am. Chem. Soc., 2011, 133, 15464.
- 44 Zurek, J.; Foloppe, N.; Harvey, J. N.; Mulholland, A.. J. Org. Biomol. Chem., 2006, 4, 3931.
- 45 Bathelt, C. M.; Zurek, J.; Mulholland, A. J.; Harvey, J. N.. J. Am. Chem. Soc., 2005, 127, 12900.
- 46 Tian, L.; Friesner, R. A.. J. Chem. Theory Comput., 2009, 5, 1421.
- 47 Li, D. M.; Huang, X. Q.; Han, K. L.; Zhan, C. G.. J. Am. Chem. Soc., 2011, 133, 7416.