Conjugated Porous Networks Based on Cyclotriveratrylene Building Block for Hydrogen Adsorption
Xiaona Han
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorLei Li
School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Search for more papers by this authorZhitang Huang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Junmin Liu
School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Junmin Liu, School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Qiyu Zheng, Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Qiyu Zheng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Junmin Liu, School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Qiyu Zheng, Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorXiaona Han
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorLei Li
School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Search for more papers by this authorZhitang Huang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Junmin Liu
School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Junmin Liu, School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Qiyu Zheng, Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorCorresponding Author
Qiyu Zheng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Junmin Liu, School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
Qiyu Zheng, Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Search for more papers by this authorAbstract
Macrocyclic CTV-Br3 reacted with the linear benzene-1,4-diboronic acid and 1,4-diethynylbenzene via Suzuki and Sonogashira-Hagihara coupling reactions producing the rigid porous materials CTV-CMP-1 and CTV-CMP-2. The porous materials have good thermal and chemical stability. The Brunauer-Emmet-Teller specific surface areas of CTV-CMP-1 and CTV-CMP-2 are 314 and 218 cm2·g−1, respectively. Physical properties of the porous materials were investigated, CTV-CMP-1 showed moderate hydrogen adsorption about 0.81 wt% at 1.13 bar while CTV-CMP-2 showed lower hydrogen adsorption about 0.51 wt%. These materials are analogs to activated carbons which could be potentially used in gas separation and organic compound adsorption.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201300276_sm_suppl.pdf615.7 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a Murray, L. J.; Dinca, M.; Long, J. R.. Chem. Soc. Rev., 2009, 38, 1294.
- 1b Farha, O. K.; Spokoyny, A. M.; Hauser, B. G.; Bae, Y.-S.; Brown, S. E.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T.. Chem. Mater., 2009, 21, 3033.
- 1c Lee, J.-Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T.. Chem. Soc. Rev., 2009, 38, 1450.
- 1d McKeown, N. B.; Budd, P. M.. Chem. Soc. Rev., 2006, 35, 675.
- 1e Germain, J.; Frechet, J. M. J.; Svec, F.. Small, 2009, 5, 1098.
- 1f Hasell, T.; Wood, C. D.; Clowes, R.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I.. Chem. Mater., 2010, 22, 557.
- 1g Morris, R. E.; Wheatley, P. S.. Angew. Chem., Int. Ed., 2008, 47, 4699.
- 2a Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M.. Science, 2002, 295, 469.
- 2b Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.. Nature, 2003, 423, 705.
- 2c Zhao, X. B.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J.. Science, 2004, 306, 1012.
- 2d Xue, C. Y.; Zhong, C. L.. Chin. J. Chem., 2009, 27, 472.
- 2e Su, Z.; Fan, J.; Okamura, T.; Sun, W. Y.. Chin. J. Chem., 2012, 30, 2016.
- 2f Etaiw, S. E. H.; Elsherbiny, A. S.; Badr El-din, A. S.. Chin. J. Chem., 2011, 29, 1401.
- 3a Cóté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M.. Science, 2005, 310, 1166.
- 3b El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cóté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M.. Science, 2007, 316, 268.
- 3c Budd, P. M.. Science, 2007, 316, 210.
- 3d Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Kl?ch, C.; O'Keeffe, M.; Yaghi, O. M.. J. Am. Chem. Soc., 2009, 131, 4570.
- 4a Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E.. Chem. Commun., 2004, 230.
- 4b McKeown, N. B.; Makhseed, S.; Budd, P. M.. Chem. Commun., 2002, 2780.
- 4c McKeown, N. B.; Budd, P. M.. Macromolecules, 2010, 43, 5163.
- 4d McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D.. Chem. Eur. J., 2005, 11, 2610.
- 4e Budd, P. M.; McKeown, N. B.; Fritsch, D.. J. Mater. Chem., 2005, 15, 1977.
- 4f Maffer, A. V.; Budd, P. M.; McKeown, N. B.. Langmuir, 2006, 22, 4225.
- 5a Lee, J. Y.; Wood, C. D.; Bradshaw, D.; Rosseinsky, M. J.; Cooper, A. I.. Chem. Commun., 2006, 2670.
- 5b Germain, J.; Hradil, J.; Fréchet, J. M. J.; Svec, F.. Chem. Mater., 2006, 18, 4430.
- 5c Tsyurupa, M. P.; Davankov, V. A.. React. Funct. Polym., 2002, 53, 193.
- 5d Tsyurupa, M. P.; Davankov, V. A.. React. Funct. Polym., 2006, 66, 768.
- 5e Trewin, A.; Willock, D. J.; Cooper, A. I.. J. Phys. Chem. C, 2008, 112, 20549.
- 5f Wood, C. D.; Tan, B.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stockel, E.; Cooper, A. I.. Chem. Mater., 2007, 19, 2034.
- 5g Bai, L. L.; Zhou, Y. H.; Wang, X. L.; Yuan, S. G.; Wu, X. L.. Chin. Chem. Lett., 2011, 22, 1115.
- 6a Choi, J. H.; Choi, K. M.; Jeon, H. J.; Choi, Y. J.; Lee, Y.; Kang, J. K.. Macromolecules, 2010, 43, 5508.
- 6b Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I.. Angew. Chem., Int. Ed., 2007, 46, 8574.
- 6c Jiang, J.-X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.. J. Am. Chem. Soc., 2008, 130, 7710.
- 6d Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I.. Chem. Commun., 2008, 486.
- 6e Weber, J.; Thomas, A.. J. Am. Chem. Soc., 2008, 130, 6334.
- 6f Weder, C.. Angew. Chem., Int. Ed., 2008, 47, 448.
- 6g Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S.. Angew. Chem., 2009, 121, 9621.
- 6h Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I.. Macromolecules, 2010, 43, 8524.
- 6i Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I.. Macromolecules, 2010, 43, 8531.
- 6j Schmidt, J.; Werner, M.; Thomas, A.. Macromolecule, 2009, 42, 4426.
- 7 Jiang, J. X.; Trewin, A.; Su, F. B.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I.. Macromolecules, 2009, 42, 2658.
- 8 Lim, H.; Chang, J. Y.. Macromolecules, 2010, 43, 6943.
- 9a Chen, L.; Yang, Y.; Guo, Z. Q.; Jiang, D. L.. Adv. Mater., 2011, 23, 3149.
- 9b Chen, L.; Yang, Y.; Guo, Z. Q.; Jiang, D. L.. J. Am. Chem. Soc., 2010, 132, 9138.
- 10a Zhang, C.; Liu, Y.; Li, B. Y.; Tan, B.; Chen, C. F.; Xu, H. B.; Yang, X. L.. Macro. Lett., 2012, 1, 190.
- 10b Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.-G.; Han, B.-H.. J. Am. Chem. Soc., 2012, 134, 6084.
- 10c Yan, Y.; Sun, F. X.; Ren, H.; Jing, X. F.; Wang, W.; Ma, H. P.; Zhao, H. J.; Zhu, G. S.. J. Mater. Chem., 2011, 21, 13498.
- 10d Yuan, D. Q.; Lu, W. G.; Zhao, D.; Zhou, H. C.. Adv. Mater., 2011, 23, 3723.
- 10e Stockel, E.; Wu, X. F.; Trewin, A.; Wood, C. D.; Clowes, R.; Campbell, N. L.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I.. Chem. Commun., 2009, 212.
- 10f Chen, Q.; Luo, M.; Wang, T.; Wang, J.-X.; Zhou, D.; Han, Y.; Zhang, C. S.; Yan, C. G.; Han, B. H.. Macromolecules, 2011, 44, 5573.
- 10g Li, A.; Lu, R.-F.; Wang, Y.; Wang, X.; Han, K.-L.; Deng, W.-Q.. Angew. Chem., Int. Ed., 2010, 49, 3330.
- 10h Zhao, H.; Jin, Z.; Su, H.; Zhang, J.; Yao, X.; Zhao, H.; Zhu, G.. Chem. Commun., 2013, 49, 2780.
- 10i Zhao, Y. C.; Zhou, D.; Chen, Q.; Zhang, X. J.; Bian, N.; Qi, A. D.; Han, B. H.. Macromolecules, 2011, 44, 6382.
- 11a McKeown, N. B.; Gahnem, B.; Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.; Book, D.; Langmi, H. W.; Walton, A.. Angew. Chem., Int. Ed., 2006, 45, 1804.
- 11b Yu, J.-T.; Chen, Z.; Sun, J. L.; Huang, Z.-T.; Zheng, Q.-Y.. J. Mater. Chem., 2012, 22, 5369.
- 12 Song, J. R.; Huang, Z.-T.; Zheng, Q.-Y.. Chin. J. Chem., 2013, DIO: 10.1002/cjoc.201300138.
- 13 Cram, D. J.; Tanner, M. E.; Keipert, S. J.; Knobler, C. B.. J. Am. Chem. Soc., 1991, 113, 8908.
- 14 Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T.. Pure Appl. Chem., 1985, 57, 603.
- 15 Chen, Q.; Wang, J. X.; Wang, Q.; Bian, N.; Li, Z. H.; Yan, C. G.; Han, B. H.. Macromolecules, 2011, 44, 7987.
- 16a Ghanem, B. S.; Hashem, M.; Harris, K. D. M.; Msayib, K. J.; Xu, M.; Budd, P. M.; Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; McKeown, N. B.. Macromolecules, 2010, 43, 5287.
- 16b Germain, J.; Svec, F.; Fréchet, J. M. J.. Chem. Mater., 2008, 20, 7069.